
SimGauss V2.0

by Matthew Ford

SimGauss V2.0 is a Non−Linear Simulation module for use with
GAUSS Version 5.0 or higher. SimGauss has been designed to
allow systems described by time dependent, non−linear
differential equations and/or state space equations to be modelled
using the GAUSS programming language. Both continuous and
sampled data systems can be modelled.

by Forward Computing and Control Pty. Ltd.
©Copyright 1988−9, 1991, 2001−2002 Forward Computing and Control Pty. Ltd
ACN 003 669 994 NSW Australia, All Rights Reserved.
email:SimGauss@forward.com.au

mailto:SimGauss@forward.com.au

SimGauss Installation

1. Unzip (or untar) the SimGauss files to your GAUSS directory. This will place the SimGauss
examples in the examples sub−directory, the source files in the src sub−directory and create a
simgauss sub−directory for your licence file.

2. Place your SimGauss licence in a file called simgauss.lic, in the simgauss sub−directory.

3. Set AUTOLOAD ON and AUTODELETE OFF. Use the GAUSS V5.0 Configure menu, choose
Preferences, click on the Compile Options tab and tick Autoload and untick Autodelete.

SimGauss is designed to be run with AUTOLOAD ON and AUTODELETE OFF. It can be run with
AUTODELETE ON but because most of SimGauss' procedures use global variables, if you make a
typing mistake and GAUSS returns the error message 'Undefined Procedure' most of the SimGauss
procedures will be deleted from the workspace. Then when you next compile a model SimGauss will
be reloaded overwriting any variables you may have set up in the workspace.

4. Set the SimGauss and Publication Quality Graphics library in order to run the SimGauss tutorial
examples and to use the SimGauss plotting procedures, SGXY etc.

library simgauss, pgraph;

This line can be added to your GAUSS startup file.

Installation Test

To test that the installation is correct run the Simple Model in Chapter 2 of this manual.

LIMITATION OF LIABILITY

By your use of this software you are agreeing to be bound by the terms of this limited warranty and
limitation of liability.

FORWARD Computing and Control Pty. Ltd. warrants that for a period of twelve months, beginning
on the date of original delivery to you, that the software will substantially conform to published
specifications and to the documentation provided it is correctly installed, together with all updates,
on the computer hardware and with the operating system for which it was designed. FORWARD
Computing and Control will provide corrections to defective documentation or correct substantial
software errors at no charge, provided (i) you have paid all fees and other charges due, (ii) you
advise FORWARD Computing and Control in writing of the claimed non−conformities, and (iii)
FORWARD Computing and Control is able to reproduce the claimed non−conformity. If
FORWARD Computing and Control is unable to provide corrections to defective documentation or
to correct substantial software errors, the software may be returned and the license fee will be
refunded. These are your sole remedies for any breach of warranty.

Except as specifically provided above, FORWARD Computing and Control Pty. Ltd. makes no
warranty or representation, either express or implied, with respect to this software or documentation,
including their quality, performance, merchantability, or fitness for a particular purpose. No oral or
written information or advice given by FORWARD Computing and Control Pty. Ltd. or Aptech
Systems, Inc., their dealers, distributors, agents or employees shall create a warranty or in any way
increase the scope of this warranty and you may not rely on any such information or advice.

Because the software is inherently complex and may not be completely free from errors, you are
advised to verify your work. In no event will FORWARD Computing and Control Pty. Ltd. or
Aptech Systems, Inc. or anyone else who has been involved in the creation, production or delivery of
this product, be liable for direct, indirect, special, incidental, or consequential damages (including
but not limited to damages for loss of use, revenue, profit, or data, claims by third parties or other
similar damages) arising out of the use or inability to use the software or documentation, even if
advised of the possibility of such damages. In no case shall FORWARD Computing and Control's
liability exceed the amount of the license fee.

This Limited Warranty is governed by the laws of the State of Washington, USA, and shall benefit
FORWARD Computing and Control Pty. Ltd. and its successors and assigns.

All correspondence to FORWARD Computing and Control Pty. Ltd. should be addressed to Aptech
Systems, Inc., 23804 SE� Kent−Kangley Road, Maple Valley, WA 98038

Information in this document is subject to change without notice and does not represent a
commitment on the part of FORWARD Computing and Control Pty. Ltd. The software described in
this document is furnished under a license agreement. The software may be used or copied only in
accordance with the terms of the agreement. The purchaser may make one copy of the software for
backup purposes. No part of this manual may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying and recording, for any purpose other than

the purchaser's personal use without the written permission of FORWARD Computing and Control
Pty. Ltd.

Copyright 1988−9, 1991, 2001−2002 FORWARD Computing and Control Pty. Ltd. ACN 003 669
994 All Rights Reserved.

GAUSS is a trademark of Aptech Systems, Inc.

Documentation Version 281102

Table of Contents
Chapter 1 Introduction..1

1.1 Introduction..1
1.2 Customizing SimGauss..2

Chapter 2 A Simple Model..4
2.1 Spring System..5

2.1.1 Compiling the Model..6
2.1.2 Possible Installation Errors..7
2.1.3 The Model Code..8
2.1.4 Printing and Plotting Variables...8
2.1.5 Saving and Loading the Plot Matrix...10

Chapter 3 Model Structure...11
3.1 SimGauss Model Structure...11
3.2 SimGauss Flow Chart..13
3.3.SimGauss Naming Conventions..15

3.3.1 Files...15
3.3.2 Identifiers..16
3.3.3 Strings...17
3.3.4 Characters..17
3.3.5 Comments...17

Chapter 4 A Full Model...18
4.1 Digitally Controlled Spring System...18

4.1.1 Model Code...19
4.1.2 Results...23

Chapter 5 State Vectors...25
5.1 Parameter Vectors..25
5.2 State Space Systems...27

Chapter 6 Integration Algorithms..32
6.1 The Integration Procedure..32
6.2 Fixed Step Size Algorithms...33

6.2.1 Euler's Method..33
6.2.2 Runge−Kutta Methods..33

6.3 Variable Step Size Algorithms...34
6.3.1 Runge−Kutta−Fehlberg Methods..34
6.3.2 Richardson−Bulirsch−Stoer Method...34
6.3.3 Adams−Moulton and Gear's Stiff Method..35

_sgkey

i

Table of Contents
Chapter 6 Integration Algorithms

6.3.4 Step Size Control...35
6.4 A Modified State Space System...36

Chapter 7 User Events...40
7.1 User Event Keywords...40
7.2 User Event Example...41

Chapter 8 Embedded Simulations..44
8.1 Two Point Boundary Value Problem...44
8.2 Identification of a Chemical Reactor...47

8.2.1 SimGauss Model File..48
8.2.2 OPTMUM Model File...50
8.2.3 Estimating the Parameters...52
8.2.4 Plotting the Results...52

Chapter 9 Debugging Models..54
9.1 Translation errors...54
9.2 Compilation Errors...56

9.2.1 .sgs File...56
9.2.2 .sgm File..56
9.2.3 .sgp File...58

9.3 Execution Errors...58
9.4 SGDEBUG...60
9.5 SimGauss Defaults...60

9.5.1 Print Format..60
9.5.2 Other Defaults...60

SimGauss Reference...61
Command Summary...61
_sgkey...64
ADDEVENT..65
BACKLASH..66
BOUND..67
CLREVENT...68
CONTROLS...69
DATALOG...70
DATASTEP...71
DEADBAND...72
DELAY..73

_sgkey

ii

Table of Contents
SimGauss Reference

DISCRETE...75
DYNAMIC...77
END_DISC, END_DL, END_DYN, END_INIT, END_TERM...78
errmint..79
EVENTQUE...81
FREEZE...82
GO..83
HALT...84
i_t..85
IMPLICIT...86
INITIAL ...89
INITSTP...90
INTALG...91
KEEPPLOT..93
LIMINT..94
LOGDATA...96
MAXORD..97
MAXT..98
MERROR...99
MINT..101
OBSERV..102
PHYLIMIT...103
PLOTVARS...106
PRTINT..108
PRTVARS..109
QUANTIZE..111
REINIT...112
RERROR..113
SCHEDULE...115
SETEPS..116
SGDEBUG...117
SGLIN..118
SGLOADP...120
SGLOGLOG, SGLOGX, SGLOGY, SGXY...122
SGPLTVAR...124
SGSAVEP..126
SGTRIM...127
SIMGAUSS..129
START...130

_sgkey

iii

Table of Contents
SimGauss Reference

STATES...131
stoptime..132
TABLE...133
TERMINAL...136

_sgkey

iv

Chapter 1

Introduction

This chapter will outline the features of SimGauss and the structure of this tutorial. It will also cover
the customizing of SimGauss. To install SimGauss refer to the installation instructions at the front of
this manual.

1.1 Introduction

SimGauss is a Non−Linear Simulation module for use with GAUSS Version 5.0 or higher.
SimGauss has been designed to allow systems described by time dependent, non−linear differential
equations and/or state space equations to be modelled using the GAUSS programming language.
Both continuous and sampled data systems can be modelled. The results of the simulations can be
plotted using the GAUSS Publication Quality Graphics module.

Some of the features of SimGauss are :−

SimGauss is interactive. All the model variables are available for display and plotting, and
their values can be changed from the GAUSS command mode or under program control.

•

SimGauss is vectorized. In keeping with GAUSS' matrix based programming language,
SimGauss can integrate state vectors directly from the state−space matrix equations.
Alternatively vectors of parameters can be defined to evaluate the effect of different values in
one run.

•

SimGauss is fast. The interactive programming environment of GAUSS makes development
and debugging of models quick and easy. You produce results faster. SimGauss' vector
capabilities simplify the modelling of state−space systems and allow the fast investigation of
parameter variations.

•

SimGauss is extendible. Procedures are provided to model backlash, dead zones, tabular data,
quantization, etc. The GAUSS programming language can be used to write other specialized
procedures. Existing Fortran, C and Assembler procedures can also be linked to the
simulation using GAUSS' Foreign Language Interface.

•

SimGauss is flexible. SimGauss can handle both continuous and discrete systems, multiple
and variable sampling rates. SimGauss also has a powerful user event facility which allows

•

1

you to modify the simulation's conditions, at precise instants in time, while the simulation is
running.

SimGauss is savable. The entire SimGauss model, including the current state, can be saved
using the GAUSS SAVEALL command. This allows you to come back to the simulation at a
later time, just as you left it. The model in steady state condition can be saved and then
various disturbances introduced, each time recalling the original steady state model before the
next run. The results of the simulation can also be saved in a GAUSS data set for use by other
GAUSS programs or for conversion to ASCII for use by external programs.

•

SimGauss can be included in other procedures. Other GAUSS procedures can run the
compiled SimGauss model. This allows model parameters to be optimized and two point
boundary value problems to be solved.

•

SimGauss has automatic step size selection. As well as the common 4th order Runge−Kutta
integration algorithm, SimGauss has variable step size, variable order integration algorithms
which automatically adjust their step size to keep the state errors within user definable
bounds.

•

This tutorial will work through a number of examples illustrating various features of SimGauss. All
the code for these models should have been copied to your GAUSS examples sub−directory as part
of the installation procedure.

1.2 Customizing SimGauss

With AUTOLOAD ON and the correct library set, SimGauss can find and load any additional
procedures your model uses. However some of these procedures such as the plotting routines are
required for almost every simulation and take time to compile. SimGauss can be customized to have
such commonly used procedures already included when SimGauss is loaded.

Before customizing SimGauss make sure you have installed it properly. (Refer to the installation
instructions at the front of this manual.) Only customize a copy of SimGauss, not the original
distribution code.

To customize SimGauss to include the XY plotting routines, clear out the GAUSS workspace, set the
required libraries and load SimGauss using

new;
library simgauss, pgraph;
simgauss;

1.2 Customizing SimGauss

2

Just hit the Enter key in response to the SimGauss prompt for a model file name. This will terminate
SimGauss. Then load the SimGauss XY plot procedure using

external keyword sgxy;

Any other files you wish to add to your SimGauss system, such as the SGSAVEP keyword should
also be added now.

Then type

compile simgauss.csg;

to save the new SimGauss system. This will overwrite the old SIMGAUSS.GCC file so be sure you
are working on a copy of SimGauss not the original.

As delivered, SimGauss uses approximately 230 global symbols and 100K bytes of workspace
before a model has been compiled.

The Publication Quality Graphics require considerable memory and may not be able to run with
SimGauss loaded on computers with limited memory. 'Saving and Loading the Plot Matrix' in
Chapter 2, A Simple Model, explains how the Publication Quality Graphics can still be used to plot
SimGauss results. This procedure can be speeded up by pre−compiling the Publication Quality
Graphics and saving the workspace for use later.

The following commands will achieve this.
new;
library simgauss, pgraph;
external keyword sgloadp, sgxy, sglogx, sglogy, sgloglog;
saveall sgplot;

SGPLOT.GCC now contains the compiled Publication Quality Graphics routines which can be
reloaded using

run sgplot;

This will overwrite the entire GAUSS workspace, so the current SimGauss workspace should be
saved first using the GAUSS SAVEALL command.

1.2 Customizing SimGauss

3

Chapter 2

A Simple Model

This chapter presents an example that is the simplest, and most limited, form of SimGauss model
that can be run. Using this model this chapter will show you how to compile and run the model and
how to print and plot the results. This example should be used to test that SimGauss has been
properly installed. Some of the common installation errors are covered in this section. Finally the
structure of the code of this simple model is explained.

The standard installation process copies the tutorial example files into the examples sub−directory.
The examples in this manual assume that your working directory is the GAUSS directory.

All the tutorial examples assume you are already in GAUSS and have a clear workspace. Just type

new;

before starting the next example if you have not exited GAUSS since running the last example. Refer
to the SimGauss Reference Manual and the GAUSS Command Reference for a complete description
of the SimGauss and GAUSS commands used here.

4

2.1 Spring System

This is a model of the mass−spring−damper system shown in Figure 2−1.

Figure 2−1

The system equations are :

 where

Fm is the force due to gravity

Fk is the spring force

Fr is the damping force

K is the spring constant (Kg/s2)

M is the mass (Kg)

R is the damping co−efficient (Kg/s)

x0 is the length of the spring at rest (m)

2.1 Spring System

5

g is the gravitational acceleration constant (m/s2)

v is the velocity of the mass (m/s)

x is the position of the mass (m)

2.1.1 Compiling the Model

Having started up GAUSS, set the SimGauss and graphics' libraries and compile the model.

library simgauss, pgraph;
simgauss examples\spring

Then run the model using the SimGauss START command

start;

Your screen should then look like Figure 2−2 (the run times are for a Toshiba Laptop Statellite Pro
6100).

Figure 2−2

2.1.1 Compiling the Model

6

2.1.2 Possible Installation Errors

If there were any errors go back and check that you have installed SimGauss correctly.

Some possible errors are :−

There is no valid SimGauss licence file.

SG_TRANS.EXE (0) : SimGauss Translator error.
 Error could not open c:\gauss50\simgauss\simgauss.lic

 Check that you have installed the simgauss licence file in the path indicated.

♦

There is no valid SimGauss licence.

SG_TRANS.EXE (0) : SimGauss Translator error.
 Error could not find valid SimGauss Key: in file
c:\gauss50\simgauss\simgauss.lic

 Check that you have installed the correct SimGauss licence for this copy of GAUSS

♦

There is not enough GAUSS workspace memory to load SimGauss.

 (0) : error G0030 : : Insufficient workspace memory

 Try exiting GAUSS and removing some of you memory resident programs, print spoolers,
etc, or reduce the amount of main program space allocated, using the GAUSS NEW
command. As delivered SimGauss requires approximately 100K bytes of workspace before a
model has been compiled.

♦

There are not enough global symbols specified in the GAUSS workspace to load SimGauss.

 (0) : error G0026 : : Too many symbols

Use the GAUSS NEW command to increase the number of global symbols available. As
delivered SimGauss requires approximately 230 global symbols before a model has been
compiled.

♦

The AUTOLOAD feature of GAUSS is OFF, or the SIMGAUSS library has not been set.

 (0) : error G0025 : 'SIMGAUSS' : Undefined symbol

♦

2.1.2 Possible Installation Errors

7

2.1.3 The Model Code

The model code required to implement this example is contained in the file spring.sgm All
SimGauss model code files have the extension .sgm

1. /* spring.sgm A simple mass/spring/damper system */
2.
3. DYNAMIC(0.1); /* Start of DYNAMIC section */
4.
5. /* Declare global constants */
6. DECLARE matrix M ! = 1; /* Kg mass */
7. DECLARE matrix K ! = 9.8; /* Kg/(s*s) spring const. */
8. DECLARE matrix R ! = 1; /* Kg/(s) damping co−effic. */
9. DECLARE matrix x0 ! = 5; /* length of spring at rest */
10. DECLARE matrix g ! = 9.8; /* gravit. acc. m/(s*s) */
11.
12. /* System equations */
13. d_v = (K.*(x0−x) − R.*v)./M − g;
14. d_x = v;
15. DECLARE matrix i_x ! = 5; /* mass initially 5 m off
16. :: the ground
17. */
18. END_DYN; /* End of DYNAMIC section */

There is only one section in this model, the DYNAMIC section which starts on line 3. The argument
to the DYNAMIC procedure specifies the initial step size that the integration algorithm can take. In
this model, because there is no DATALOG section or DATASTEP statement, the initial step size
(0.1) is also used to set the data logging interval for the print and plot variables.

The DECLARE statements set up the necessary constants for the model. Since these assignments
occur only at compile time they do not slow down the running of the model. Be sure to use either the
?= or != versions of the DECLARE statement or you will get a redefinition error when you try to
translate the model for a second time.

The actual system equations are on lines 13 and 14 which define the derivatives of the mass'
velocity, v, and its position, x.

The starting and stopping time of the integration is set by the SimGauss global variables, i_t and
stoptime. The default values of these are zero.

2.1.4 Printing and Plotting Variables

Any matrix variable currently defined in the GAUSS workspace can be printed. The SimGauss
keyword PRTVARS is used in the GAUSS command mode to set the variables to be printed. When
SimGauss first starts up, the time, t, is the only variable printed. The format of the output is

2.1.3 The Model Code

8

controlled by the GAUSS FORMAT command.

The SimGauss keyword PLOTVARS is used in the GAUSS command mode to set the variables to
be saved for plotting. Only scalars or vectors (row or column) can be saved for plotting. Initially
there are no plot variables specified.

The following commands extend the run time to 4 sec. and the set the print and plot variables to t, x
and v.

» stoptime=4;
» prtvars t x v;
 SimGauss WARNING in PRTVARS : Variable 'T' already being printed.
 Variable not added.
» plotvars t x v;
» prtint(10);
 1.0000000
» start;

Also the default value for PRTINT, number of DATASTEPs between displaying the print variables,
is 1. With the present DATASTEP interval of 0.1 sec. this would result in about 40 lines of output.
To reduce this volume of printed output the print interval is set to display the print variables only
every 10th DATASTEP interval.

Now re−run the model using START. Your screen should now look like Figure 2−3.

Figure 2−3

2.1.3 The Model Code

9

2.1.5 Saving and Loading the Plot Matrix

To plot the saved plot variables using GAUSS' Publication Quality Graphics routines you can use the
SimGauss keywords SGXY, SGLOGX, SGLOGY and SGLOGLOG. Each of these keywords are
followed by the variables to use as the X and Y axes. The Y axis variables are separated from the X
axis variables by a comma.

The Publication Quality Graphics package requires considerable memory and may not be able to run
with SimGauss loaded on computers with limited memory. In these cases the following commands
can be used to save the plot matrix in a GAUSS data set then reload it for plotting using the
Publication Quality Graphics. (Refer to the Section 1.2, 'Customizing SimGauss' in the Introduction
for a fast way of loading the plot routines.)

sgsavep spring; /* save plot vars to a data set */
saveall spring; /* save the current workspace */
new;
library simgauss, pgraph;
sgloadp spring; /* reload the plot variables */
sgxy t,x;

which gives the graph in Figure 2−4.

Figure 2−4

2.1.5 Saving and Loading the Plot Matrix

10

Chapter 3

Model Structure

This chapter will explain in detail the structure of a SimGauss model and the way in which each
section is used in the simulation. The naming conventions used by SimGauss and the files produced
by the translator will also be explained in this chapter.

3.1 SimGauss Model Structure

The simplest SimGauss model has only a DYNAMIC section. The types of model that can be
handled with this simple structure are very limited. SimGauss provides a larger, more flexible
structure which includes

Gauss Code
INITIAL Section

DYNAMIC Section
DISCRETE Section(s)
DATALOG Section
TERMINAL Section

Gauss Procedures

These sections are shown in more detail in Figure 3−1.

All the sections, except the DYNAMIC section, are optional and there can be more than one
DISCRETE section. However if any of the optional sections are present they must be in the order
shown in Figure 3−1.

11

Figure 3−1

The Gauss Code section of the model allows you to tailor the GAUSS environment that your model
will run in, such as by setting load paths, libraries and the stoptime. This section of the model starts
at the first line of code and ends at the first SimGauss section command. The Gauss Code section is
only executed when the model is compiled, not when it is run.

The INITIAL section is executed every time the START command is used to run the model. It
allows the initial conditions for the model to be calculated using any variables already defined in the
GAUSS workspace. When this section is executed the state and derivative variables have missing

Chapter 3 Model Structure

12

values as the initial conditions are not transferred to the states until after the INITIAL section is
executed.

The DYNAMIC section defines the state derivatives. Derivative statements are not allowed in any
other section. The DYNAMIC code is called every time the integration routine wants to evaluate the
derivatives at a given state.

The DISCRETE sections of the model are executed only at specific times. They can execute either
repetitively, such as samplers for digital controllers, or only when SCHEDULEd, for example to
change model's states abruptly.

The DATALOG section contains any code which is only needed for calculating output variables.
This code is called at each data logging interval before displaying the print variables and saving the
plot variables. The DATALOG section is not allowed to modify any of the model's variables. That is
it can only assign values to variables that are not used in any other section of the model.

The TERMINAL section is called when the HALT flag is set, terminating the run. This section can
be used to close output files, calculate performance values at the end of the run, etc.

The Gauss Procedures section is used to define any procedures used by the model. This section is
never executed, only compiled, so any GAUSS code here which is outside a procedure definition is
never executed.

An alternative method of including the procedures used by the model is to set up a GAUSS library
and use the Gauss Code section to set the appropriate library file. When using SimGauss with
AUTODELETE OFF any procedures referenced in the model code which do not appear in an active
library need to have a EXTERNAL statement in the Gauss Code section of the model.

Each of the INITIAL, DYNAMIC, DISCRETE, DATALOG and TERMINAL sections of the model
are translated into separate procedures which are called by the SimGauss procedures START and
GO. This means you cannot branch outside these model sections using GOTO statements. Also IF
and DO statements must not extend across section boundaries and procedure definitions are not
allowed in these sections.

At present the SimGauss translator does not process #INCLUDE statements therefore these should
not be used to include code that contains SimGauss section commands or derivative statements.
Also, no GAUSS statements are allowed between the sections.

3.2 SimGauss Flow Chart

Two basic commands are provided to run a model. These are START and GO. The flow chart for
these procedures is shown below (Figure 3−2).

3.2 SimGauss Flow Chart

13

Figure 3−2

The START command clears the HALT flag then executes the code contained in the INITIAL
section. At the end of this section the initial conditions are transferred to the states. Any states that do
not have an initial condition defined are set to the scalar 0.

3.2 SimGauss Flow Chart

14

The DYNAMIC, DISCRETE and DATALOG sections are then executed in the order in which they
appear in the model code. This ensures that all the variables are initialized ready for the first data
logging and that all DISCRETE sections are properly SCHEDULEd. (The DYNAMIC and
DATALOG sections are then executed again to update the model's variables to reflect any changes
made by the DISCRETE sections)

The HALT flag is then checked to see if it is set.

If the HALT flag is not set, the plot variables are saved and the print variables displayed. Then the
integration routine is called to advance the states to the next event time. This event could be either a
DATALOG event, a DISCRETE event, a user event or the stoptime event. The event procedure is
then executed and the HALT flag tested.

If the HALT flag is set (or the user has interrupted the run by pressing the H key) the final set of print
variables are displayed and the plot variables saved before executing the TERMINAL section of the
model. The START procedure returns a string containing the run time.

The GO command continues the run from where it was last halted. If the stoptime has not been
changed the run will terminate without advancing the states. The GO procedure also returns a string
containing the run time.

3.3.SimGauss Naming Conventions

SimGauss reserves several classes of identifier and file names for special uses.

3.3.1 Files

SimGauss uses three classes of file name. These are shown in Table 3−1. Only files with the
extension .sgm are written by the user. The other two file types are generated automatically by the
translator.

3.3.SimGauss Naming Conventions

15

Table 3−1
SimGauss File Types

model.sgm Files containing the user's model code.

model.sgs Files generated by the SimGauss translator to define the model's states.

model.sgp Files generated by the SimGauss translator to define the procedures
needed to run the model.

3.3.2 Identifiers

SimGauss identifier classes are denoted by a prefix consisting of a letter(s) and an underscore. For
example variables starting with d_ denote the derivatives of states. d_x is the derivative of the state
x. Table 3−2 lists the classes of identifier used by SimGauss.

Table 3−2
SimGauss Identifiers

d_state The derivative of state

i_state The initial condition of state

m_state The maximum integration error for state

r_state The relative integration error for state

m_ctrl The absolute perturbation for control

r_ctrl The relative perturbation for control

SGP_name SimGauss model sections as procedures

S_name SimGauss system variables and procedures

In keeping with GAUSS syntax there is no distinction between upper and lower case identifiers. So
D_x and d_X are both the same variable. No user defined variables should start with 'S_' or 's_'
as these identifiers are reserved for SimGauss internal variables and procedures.

The states of a SimGauss model are determined from the statements which assign values to the
derivative variables. These are called derivative statements. Derivative statements are only allowed

3.3.2 Identifiers

16

in the DYNAMIC section of the model.

For example

d_x = v;

identifies x as being a state of the model.

A consequence of this naming arrangement is that state names can have at most 6 characters since
SimGauss limits variable names to 8 characters. For a similar reason control variables are also
limited to 6 characters.

At present the translator does not recognise derivative variables enclosed in () or { }. The following
valid GAUSS statements

(d_x1) = v1;
{ d_x2 } = velocity(v2);

will not add x1 or x2 to the list of model's states and so SimGauss will not integrate the states x1 or
x2.

3.3.3 Strings

Strings in SimGauss model files must have a closing pair of double quotes on the same line as the
opening pair. Long strings can be continued on the following line by using "\ at the end of the first
line of the string. Carriage returns and line feeds can be inserted into strings using the special
character pairs \r and \n inside the double quotes.

3.3.4 Characters

The SimGauss translator forces all the model code characters into normal ASCII values. This means
that any graphic characters appearing in the model are converted to normal text characters when they
are copied to the .sgp file. To insert graphic characters into a string use the \ddd GAUSS codes as
explained in the GAUSS manual.

3.3.5 Comments

SimGauss only allows comments delimited by /* and */. Any @'s found in the model code outside a
string or a comment, delimited by /* */, will be flagged as an error.

3.3.3 Strings

17

Chapter 4

A Full Model

This chapter presents an example that includes all the possible model sections. It also illustrates the
difference between a repetitive DISCRETE section and one that needs to be SCHEDULEd.

4.1 Digitally Controlled Spring System

This model is an extension of the Spring System of Chapter 2, A Simple Model. The system
damping, R, is now controlled by a digital controller. The velocity, v, of the mass is sampled every
0.1 seconds and the absolute value used to increase the minimum value of system damping. In
practice the sampling of the velocity and calculation of the new value of damping takes some time to
complete. To model this sampling and calculation time, the output from the digital controller is
delayed by 10mS (Figure 4−1). Initially the mass is released 1 meter above its steady state position.

Figure 4−1

18

The system equations are :

Every 0.1 seconds the velocity is sampled and Rd calculated from

10ms later the new value of damping is transferred to the system damping parameter, R, via

 where

K is the spring constant (Kg/s2)
M is the mass (Kg)
R is the damping co−efficient (Kg/s)
Rd is damping co−efficient calculated by the digital controller
R0 is the minimum system damping co−efficient (Kg/s)
gain is the gain of the digital controller
x0 is the length of the spring at rest (m)
g is the gravitational acceleration constant (m/s2)
v is the velocity of the mass (m/s)
x is the position of the mass (m)

4.1.1 Model Code

1. /* ctrlsprg.sgm A mass/spring/damper system
2. ** with digital control of the damping. */
3.
4. /* Set up Gauss environment */
5. library simgauss, pgraph;
6. graphset;
7. external proc plotxiri;
8. Ts = 0.1; /* sampling period */
9. calcT = 0.01; /* 10 mS calculation delay */
10. stoptime = 4.0; /* stop at 4 sec */

4.1.1 Model Code

19

11.
12. INITIAL;
13. DECLARE matrix R0 ! = 1; /* min. damping Kg/(sec) */
14. R = R0; /* initial value for damping */
15.
16. DECLARE matrix M ! = 1; /* Kg mass */
17. DECLARE matrix K ! = 9.8; /* Kg/(s*s) spring const. */
18. DECLARE matrix x0 ! = 5; /* length of spring at rest */
19. DECLARE matrix x1 ! = 1; /* initial displacement */
20. DECLARE matrix g ! = 9.8; /* grav. accel. m/(s*s) */
21. i_x = x0−g./k + x1; /* steady state position + x1 */
22.
23. output file = ctrlsprg.out reset; /* open output */
24. END_INIT;
25.
26. DYNAMIC(0.1);
27. /* System equations */
28. d_v = (K.*(x0−x) − R.*v)./M − g;
29. d_x = v;
30. END_DYN;
31.
32. DISCRETE("sample",Ts); /* sample every Ts sec */
33. DECLARE matrix gain ! = 4; /* controller gain */
34. Rd = R0+abs(v).*gain; /* damping varies with v */
35. SCHEDULE("control",T+calcT); /* SCHEDULE output */
36. END_DISC;
37.
38. DISCRETE("control",0); /* Must be scheduled */
39. logdata(0); /* no print output */
40. R = Rd; /* transfer new control to system */
41. logdata(0); /* no print output */
42. END_DISC;
43.
44. DATALOG(0.1);
45. Vi = V*3.2808; /* convert to imperial feet/sec */
46. Xi = X*3.2808; /* and feet */
47. Ri = R*0.4536; /* and pounds/(sec) */
48. END_DL;
49.
50. TERMINAL;
51. output off; /* close output file */
52. END_TERM;
53.
54. /* Gauss procedures */
55. Proc(0) = plotxiri;
56. _ptitlht = 0.3;
57. _paxht = 0.3;
58. title("Mass/Spring/Damper with Digital Damping "\
59. "Control");
60. begwind;
61. window(2,1,0);
62. sgxy "T,Xi";

4.1.1 Model Code

20

63. title("");
64. nextwind;
65. sgxy "T,Ri";
66. endwind;
67. endp;

Gauss Code♦

Lines 1 to 11 are the Gauss Code section of the model. They set up the GAUSS environment in
which the model is to run. Line 5 sets the libraries needed for this model. Line 6 initializes the
graphics module and 7 defines plotxiri as a procedure. Lines 8 and 9 set the sampling period and the
calculation delay. Line 10 sets the initial stop time for the model. These variables could also have
been set using DECLARE statements.

Refer to the section on Customizing SimGauss in the Introduction for instructions on how you can
include the plotting routines in your SimGauss system so that they do not need to be compiled each
time SimGauss is loaded.

INITIAL Section♦

Lines 12 to 24 are the INITIAL section of the model. This code ensures that at the START of each
run the initial value of the damping is set to R0 and that the initial condition for the position of the
mass, i_x, is 1 meter above the steady state position. Performing this calculation here allows the
values of the spring constant, K and the length of the spring, x0, to be changed from the GAUSS
command mode and the simulation re−run with the same initial displacement from the steady state
position. Line 23 resets the output file to capture the print variables.

Any state for which an initial condition variable is not defined is assigned an initial scalar value of 0.
This is the case for the state v as no i_v is defined. Initial conditions need not be defined in the
model code but can be defined from the GAUSS command mode.

DYNAMIC Section♦

The DYNAMIC section of the model is lines 26 to 30. This contains the same system equations as
were used in Chapter 2.

4.1.1 Model Code

21

DISCRETE Sections♦

The first DISCRETE section is defined in lines 32 to 36. This DISCRETE section is called sample
and is executed repetitively every Ts seconds. This section implements the digital controller. It
calculates the new damping co−efficient (line 34) and then SCHEDULEs the control
DISCRETE section to transfer the output to the continuous system calcT seconds later (line 35).
SCHEDULE statements should only appear in DISCRETE sections or from user events (see
Chapter 7).

The second DISCRETE section is called control and runs from line 38 to 42. As it has a zero time
interval specified (line 38) it will not execute unless SCHEDULEd by another DISCRETE section.

The LOGDATA statements on lines 39 and 41 force the DATALOG section to be executed and the
plot variables to be saved. This gives a clean step in the plot of R, regardless of when R is updated. If
the argument to the LOGDATA procedure is true (non−zero) then the print variables are also
displayed at the same time. Line 40 transfers the new damping co−efficient to the continuous model.

When the START command is used to run the model the INITIAL, DYNAMIC, all DISCRETE
sections and the DATALOG section are executed in the order in which they appear in the model.
This ensures that all the variables are initialized ready for the first data logging and that all the
DISCRETE sections are properly SCHEDULEd. In this case the DISCRETE section, sample,
automatically re−SCHEDULEs itself to execute again Ts seconds after the START. It also
SCHEDULEs the control DISCRETE section to execute calcT seconds after the START.

DATALOG Section♦

Lines 44 to 48 are the DATALOG section of the model. The DATALOG statement on line 44 sets
the data logging interval to 0.1 seconds. In this model the DATALOG section is used to convert the
position, velocity and damping from metric to imperial units for printing and plotting.

TERMINAL Section♦

The TERMINAL section is lines 50 to 52. It turns off the output file at the end of the run.

Gauss Procedures♦

Lines 53 to 67 form the Gauss Procedures section of the model. In this model only one procedure is
defined which will plot Xi and Ri on the same page with an appropriate title.

4.1.1 Model Code

22

4.1.2 Results

Compile the model using

simgauss examples\ctrlsprg

Before using START to run the model, the required print and plot variables need to be specified. For
this model the position and damping in imperial units will be printed and saved for plotting.

Type

prtvars xi ri;

to set the print variables and

plotvars t xi ri;

to set the plot variables.

prtint(10);

is used to set the print interval to 10 times the data logging interval (once every second). After
running the model using START your screen should look like Figure 4−2.

4.1.2 Results

23

Figure 4−2

The plotting procedure defined in the model can now be used to plot the results.

Type

plotxiri;

to obtain the plot shown in Figure 4−3.

Figure 4−3

4.1.2 Results

24

Chapter 5

State Vectors

One of the advantages of SimGauss over other simulation languages is the ease with which state
vectors can be defined and used. In keeping with the matrix capabilities of GAUSS, SimGauss can
integrate state vectors as easily as scalars. These state vectors can be generated in two ways, either
by replacing the scalar derivative equation with one that uses vectors or replacing a group of scalar
derivative equations with a single matrix equation.

This chapter discusses both these types of vectors, parameter vectors, and state vectors arising from
state space systems. The use of vectors both speeds up the simulation and simplifies modelling.

5.1 Parameter Vectors

Parameter vectors allow fast evaluation of the effects of varying one or more model parameters. The
digitally controlled spring model of Chapter 4, A Full Model, will be used to demonstrate the use of
parameter vectors. An obvious parameter of interest in this system is the gain of the digital
controller. Using vectors, various values of gain can be efficiently investigated in one run. In order to
integrate the various gain models in one run the derivative statements must be able to return a vector
of state derivatives corresponding to the vector of gains. SimGauss allows you to specify the
dimensions of the various parameters of the model after it has been compiled, provided the model
statements can handle the vectors correctly.

In general a scalar model can usually be converted to a vector model by replacing all the occurrences
of / by ./ and * by .* However care must be taken with statements that use relational operators, such
as IF statements, and with procedures that return or expect scalars. These types of statements are
most simply handled by enclosing them in a DO loop which processes the elements of the vector one
at a time. The model code for the digitally controlled spring, Section 4.1.1, uses element by element
operators and has no relational operators.

The effect of five gains ranging from 0 to 10 will be investigated including the original scalar gain of
4. Having compiled the ctrlsprg.sgm model, the gain needs to be redefined as a vector and the
dimensions of the model's states changed accordingly. SimGauss determines the dimensions of the
states automatically from the dimensions of the initial conditions, so the initial conditions of the
position, x, and the velocity, v, must be redefined as column vectors. SimGauss only allows scalars
or column vectors for states.

25

Since the position's initial condition, i_x, is calculated in the INITIAL section of the model from

i_x = x0 − g./k + x1;

it cannot be redefined directly.

However by redefining x1 as a column vector, i_x is forced to a column vector also. Equivalently
either x0, g or k could have been redefined as column vectors.

To redefine the gain and the initial conditions type

gain = {0, 0.4, 1.5, 4, 10};
i_v = reshape(0,5,1);
x1 = reshape(x1,5,1);

The print and plot variables and the printing interval need to be set to the same ones used in Chapter
4, although xi and ri are now vectors.

prtvars xi ri;
plotvars t xi ri;
prtint(10);

Before SimGauss can run the model with these new dimensions, it has to regenerate and recompile
the procedure files which depend on the dimensions of the model's variables. These are: the
procedures that transfer the states to the model's variables and the printing and plotting procedures.

Each time the START command is used to run the model SimGauss checks the dimensions of the
initial conditions after executing the model's INITIAL section. If any of the dimensions have
changed since the last START, then SimGauss automatically recompiles the state transfer
procedures and executes START again. If the state dimensions are correct SimGauss then executes
the DYNAMIC section, all the DISCRETE sections and the DATALOG section to initialize all the
variables for the first data logging operation.

SimGauss then checks the dimensions of first the print, and then the plot variables, against their old
dimensions. If any of the dimensions have changed SimGauss recompiles the affected procedure and
executes START again.

When GO is used to continue a run it also executes the DYNAMIC and the DATALOG sections
before checking the dimensions of the print and plot variables and recompiling if necessary before
executing GO again.

Run the vector model using START and compare the run time to that obtained for the scalar case.
On this machine the vector run took about 0.04 seconds whereas five scalar runs would have taken

Chapter 5 State Vectors

26

about 4 seconds. The use of parameter vectors has produced the results approximately 4 times faster
than the equivalent five scalar runs.

Figure 5−1 shows the response of xi for the five gains. It was generated by the following
commands.

library simgauss, pgraph;
title("Digitally Controlled Mass/Spring/Damper System "\
"for 5 Gains");
_plegstr = " 0.0\000 0.4\000 1.5\000 4.0\000 10 ";
_plegctl = {1,5,3,14};
sgxy "T,Xi";

Figure 5−1

5.2 State Space Systems

Expressing a system of differential equations as a matrix differential equation is often very
convenient and since GAUSS is optimized for matrix calculations it is also usually more efficient,
unless the matrices have a lot of zero elements.

A continuous, linear, system of differential equations can always be expressed as

5.2 State Space Systems

27

where x is a vector of states
u is a vector of inputs
y is a vector of outputs and
A, B, C and D are matrices of the appropriate sizes

This state space representation of the system is discussed in the standard text books on control theory
such as Takahashi et al. [1]. The SimGauss command SGLIN can be used to find the linearized
A,B,C and D matrices of non−linear systems at the current state.

The simulation of state space systems will be illustrated using the paper−machine head box example
described by Franklin and Powell [2]. In this example the inputs, u, are the air control and the stock
control. The outputs, y, are the total head and the liquid level. The states, x, are the total head, the
liquid level and the change in air valve opening.

Digital control of the system is obtained by sampling the states every 0.2 seconds and feeding them
back to the inputs, via a gain matrix K (state feedback). For further details on the plant and the design
of the feedback matrix refer to Franklin and Powell's book [2] which is an excellent introduction to
digital control methods.

The code for the model is contained in the file STATEMAT.SGM

1. /* statemat.sgm A state matrix simulation
2. ** with digital state feedback control. */
3.
4. /* Set up Gauss environment */
5. library simgauss, pgraph;
6. graphset;
7. _plctrl = −1; /* symbols only */
8. _plegstr = "total head\000liquid level";
9. _plegctl = {1,5,1.8,0.3};
10. Ts = 0.2; /* sampling period */
11. calcT = 0; /* no calculation delay */
12. stoptime = 3.0; /* stop at 3 sec. */
13. datastep(0.2); /* set data logging every 0.2 sec. */
14.
15. /* Set up the state matrices and state gain matrix */
16. A = {−0.2 0.1 1, −0.05 0 0, 0 0 −1};
17. B = {0 1, 0 0.7, 1 0};
18. C = {1 0 0, 0 1 0};
19. D = {0 0, 0 0};
20. K = {5.85 −8.41 3.55, 0.986 5.22 −0.24};

5.2 State Space Systems

28

21. i_x = {1, 0, 0}; /* initial state */
22. Iu = {0, 0}; /* initial control */
23.
24. INITIAL;
25. u = Iu; /* initialize inputs for time zero */
26. END_INIT;
27.
28. DYNAMIC(0.1);
29. /* System State Equations */
30. d_x = A*x + B*u;
31. y = C*x + D*u;
32. END_DYN;
33.
34. DISCRETE("sample",Ts); /* sample every Ts sec */
35. /* State Feedback */
36. ud = −K*x;
37. SCHEDULE("control",T+calcT); /* SCHEDULE output */
38. END_DISC;
39.
40. DISCRETE("control",0); /* Must be scheduled */
41. logdata(0); /* no print output */
42. u = ud; /* transfer new control to system */
43. logdata(0); /* no print output */
44. END_DISC;

The GAUSS environment and the required matrices and vectors are defined in lines 5 to 22. Line 21
sets the initial state of the system and informs SimGauss of the dimension of the state vector. Since
there is no DATALOG section in this model, line 13 sets the data logging interval to 0.2 seconds.

The state space equations are defined on lines 30 and 31, while the digital sampling is carried out
every Ts seconds by the DISCRETE section sample (lines 34 to 38). Line 36 calculates the new
control based on the sampled values of the states. This is then transferred to the plant by the
control DISCRETE section (lines 40 to 44), after a calculation delay. Initially the calculation
delay has been set to zero (line 11).

The model is run using the commands

» simgauss examples\statemat;
» prtvars y;
» plotvars t y;
» prtint(10);
» start;

Figure 5−2 shows the output generated from running this model.

5.2 State Space Systems

29

Figure 5−2

Figure 5−3 is a plot of the system output, y, sampled at 0.2 second intervals generated using the
commands

» title("Paper−Machine Head Box with Digital Control");
» sgxy t,y;

The matrices and initial condition vectors used in this model are defined in the GAUSS section of the
model, rather than in the INITIAL section. This allows you to change them from the GAUSS
command mode, after the model has been compiled, to simulate other state space systems. For
example setting K to a matrix of zeros will give the open loop response.

5.2 State Space Systems

30

Figure 5−3

To change the control from digital to analogue, edit the model code to remove the DISCRETE
sections and insert

u = −K*x;

after line 31 in the DYNAMIC section.

Another change that you may want to make is to replace the simple digital controller with a more
general one using difference equations. This can be conveniently done using the discrete state space
form of the difference equations. The file discmat.sgm contains the model code incorporating the
necessary changes.

References

[1] Takahashi, Y.M., Rabins, J. and Auslander, D.M., Control and Dynamic Systems,
Addison−Wesley, Mass. 1970.

[2] Franklin, G.F. and Powell, J.D., Digital Control of Dynamic Systems, Addison−Wesley, Mass.
1980, pp. 265

5.2 State Space Systems

31

Chapter 6

Integration Algorithms

SimGauss provides eight integration algorithms. These are

Euler's method
2nd order Runge−Kutta
4th order Runge−Kutta

2nd/3rd order Runge−Kutta−Fehlberg
4th/5th order Runge−Kutta−Fehlberg

Richardson−Bulirsch−Stoer extrapolation method
Adams−Moulton predictor−corrector method

Gear's stiff method

The first three are fixed step size algorithms while the last five are variable step size algorithms.
Initially SimGauss' integration algorithm is set to 4th order Runge−Kutta, not because this is always
the best, but because it is the one most people are familiar with. This chapter will discuss the
SimGauss integration process and the integration algorithms. The use and advantages of the variable
step size algorithms will be illustrated by an example.

6.1 The Integration Procedure

SimGauss is event driven. This means that the integration proceeds from event to event and there is
no mechanism in SimGauss for stopping the simulation between events. SimGauss maintains an
ordered event queue. After each event, SimGauss compares the next data logging time and the
stoptime to the first event on the queue and determines which is earlier. Data logging intervals and
the stoptime are considered to be events but are not put on the event queue. It then calls the
integration procedure to advance the model states to the next event time. If more then one of these
events occurs at the same time the stoptime takes precedence followed by the data logging event
then the event on the event queue.

After each event the SimGauss integration procedure first collects the current states and calls the
DYNAMIC section of the model to evaluate the initial derivatives in case any of the states or
variables have been changed by the last event. It then takes an integration step. At the end of the step
the DYNAMIC section of the model is called again to update the variables and derivatives to the
new state in preparation for the next integration step or the next event. If the next event time has not
been reached further integration steps are taken until the next event time is reached.

32

For each integration step, one of SimGauss' integration algorithms is used to advance the states. The
integration algorithm is selected by the INTALG keyword. The INTALG keyword can be use at
any time during the simulation and will take effect from the next integration step even if the next
event has not yet been reached.

6.2 Fixed Step Size Algorithms

The three fixed step size algorithms are: Euler's method, 2nd order Runge−Kutta and 4th order
Runge−Kutta. When a fixed step size algorithm is selected using INTALG, SimGauss sets the
integration step size to the initial step size. The initial step size is set by the argument to the
DYNAMIC statement in the model code. It can be changed at any time using the INITSTP
command. When the simulation is run the size of each integration step is determined by the
minimum of, the time to the next event and the current step size.

For fixed step size algorithms, the integration step will stay at the initial step size unless the time to
the next event is less than the initial step size. In that case a small step is taken to bring the time up to
the next event time. This means that if DATASTEP is less than the initial step size then the time
between data logging events sets the upper limit on the integration step size.

6.2.1 Euler's Method

Euler's method is not recommended for any real application but is included for pedagogical purposes
and for error checking. It is a first order algorithm requiring one derivative evaluation per step. That
is one call to the DYNAMIC section procedure, SGP_DYN, per step. Refer to any good numerical
analysis text book such as Conte and de Boor [1] for further details.

6.2.2 Runge−Kutta Methods

The 2nd and 4th order Runge−Kutta algorithms make 2 and 4 derivative calculations across the
interval and are 2nd and 4th order accurate respectively. A weighted combination of these
derivatives is then used to calculate the new states. (See Algorithms 6.2 and 6.3 of Conte and de
Boor's text [1].)

For the same accuracy the Runge−Kutta 2nd order algorithm requires a smaller step size than
Runge−Kutta 4th order but for the same step size should run faster for non−trivial models. For
models with TABLE lookups or hard non−linearities, such as BACKLASH and DEADBAND,
Runge−Kutta 2nd order is recommended. This is because the higher accuracy of the 4th order
method depends on the smoothness of the higher order derivatives.

The main problem with these fixed step size Runge−Kutta methods is that no error estimate is
available. To check the errors in a practical simulation halve the step size, using INITSTP, and see
how much the results change. The difference between results can then be found by using

6.2 Fixed Step Size Algorithms

33

SGPLTVAR to extract the required outputs after each run and then subtracting them.

When doing this check, the DATASTEP should be a negative integer so that data logging occurs a
multiples of the integration step size and does not force small steps to be taken. The value of
INITSTP also needs to be small enough to give reasonably accurate results for the system
concerned.

Variable step size algorithms overcome this difficulty by calculating an estimate of the state error
automatically and adjusting their step size accordingly.

6.3 Variable Step Size Algorithms

The variable step size algorithms available in SimGauss are the 2nd/3rd order
Runge−Kutta−Fehlberg, the 4th/5th order Runge−Kutta−Fehlberg, the Richardson−Bulirsch−Stoer
extrapolation method, the Adams−Moulton predictor−corrector method and Gear's stiff method. All
these algorithms estimate the local truncation error at each integration step and adjust the step size to
keep the local error less than the specified error.

It is important to remember that what is being controlled is the local truncation error at each step.
The error in the states at the end of the run consists of both the local truncation error for the last step
plus the cumulative effect of the truncation errors of all the previous steps.

The efficiency of all these variable step size methods relies on being able to take large steps over
smooth areas of the simulation. Since the maximum step that the integration algorithm can take is
limited by the time to the next event, if you wish to datalog at the finest intervals without limiting the
step size then DATASTEP(−1) should be used to datalog at every integration step.

6.3.1 Runge−Kutta−Fehlberg Methods

The 2nd/3rd order Runge−Kutta−Fehlberg algorithm requires 3 derivative evaluations and is 3rd
order accurate while the 4th/5th order algorithm requires 6 derivative evaluations and is 5th order
accurate. See Thomas [2] for further details on these methods and their error control.

The 2nd/3rd order algorithm is recommended for most physical simulations. The 4th/5th order
algorithm is for use with models that have continuous higher order derivatives and fewer
discontinuities, DEADBANDs, BACKLASH, TABLE lookups, etc.

6.3.2 Richardson−Bulirsch−Stoer Method

The Richardson−Bulirsch−Stoer method divides each integration step into a variable number of
sub−steps. It then uses Richardson's extrapolation method to estimate the new values for the state for
a sub−step approaching zero length. See Press et. al. [3] for a more detailed explanation. For smooth

6.3 Variable Step Size Algorithms

34

systems this method can take much larger steps than other methods.

6.3.3 Adams−Moulton and Gear's Stiff Method

Adams−Moulton and Gear's stiff method are both variable step size, variable order,
predictor−corrector methods. See Gear [4] for details. The Adams−Moulton method is suitable for
differential equations whose solution is well approximated by a polynomial of moderate order. For
other cases Richardson−Bulirsch−Stoer is often better.

Gear's stiff method is the method of choice when the system contains widely varying time constants.
It allows larger integration step sizes without going unstable. It uses a subset of the SGLIN code to
form a linearized system at the current state. The perturbations of the states used to linearize the
system are determined from the current desired_error as defined below.

6.3.4 Step Size Control

When a variable step size algorithm is selected using INTALG, SimGauss does not change the
current integration step size. When the simulation is run the size of each integration step is
determined by the minimum of, the time to the next event, the current step size and the maximum
step size. The variable step size algorithm then attempts to take a step of that size. If the local error is
less then the desired_error then the algorithm updates the states and returns the maximum of the new
integration step size and the minimum step size. Otherwise the step fails and the algorithm
automatically reduces the current step size and tries again. This continues until either the smaller step
size is successful or the minimum step size is reached.

The desired_error is calculated from the specified MERRORs and RERRORs for each state. The
desired_error for each state is given by

desired_error = max(m_state , r_state * max(abs(state)))

where max(abs(state)) is the maximum of the absolute value of that state so far, not the current
value.

In SimGauss both the maximum and the relative error can be specified separately for each state. The
variables m_state specify the maximum errors while the variables r_state specify the relative errors.
These variables should be either scalars or have the same dimension as the corresponding state.
However you are not forced to specify the errors for each state separately. The SimGauss commands
MERROR and RERROR can be used to globally set the maximum and relative errors for all states
which do not have a respective individual error specified or whose specified error is zero. The initial
value for MERROR and RERROR is 1.0E−4.

If any of these variable step size algorithms attempts to reduce the integration step size below the

6.3.3 Adams−Moulton and Gear's Stiff Method

35

minimum step size set by MINT then the error flag errmint is set to 1 and the DYNAMIC section of
the model is executed once. If the errmint flag is still non−zero on return from the DYNAMIC
section the run is stopped with an error message. Testing the errmint flag allows you to call MINT
or change the integration algorithm to get over a singularity or some other difficult point in the
simulation.

6.4 A Modified State Space System

A modification of the state space model of Chapter 5, State Vectors, will be used here to demonstrate
the advantages of variable step size algorithms. Compile the file statemat.sgm using SimGauss and
select the same print and plot variables as before (Figure 5−2). Then change the A[3,3] element to
−30 and run the model and plot the results (Figure 6−1) i.e.

prtvars y;
plotvars t y;
prtint(5);
a[3,3] = −30;
start;
title("Modified Paper−Machine Head Box using RK4");
sgxy t,y;

Figure 6−1

The integration method is unstable and if the simulation is run for a longer time an overflow error

6.4 A Modified State Space System

36

will occur. This is not due to an instability in the model but rather instability in the 4th order
Runge−Kutta integration algorithm.

This type of instability can be removed by choosing a smaller integration step size using INITSTP,
in this case approximately INITSTP(0.03). However this results in a longer run time. A better
approach in this case is to use one of the variable step size algorithms.

Set the integration algorithm to 2nd/3rd order Runge−Kutta−Fehlberg and the maximum and relative
errors to 1.0E−2. Then re−run the simulation.

intalg rkf2;
merror(0.01);
rerror(0.01);
start;

The results for this run are shown in Figure 6−2. Figure 6−3 shows the response of the output.

Figure 6−2

6.4 A Modified State Space System

37

Figure 6−3

When a run terminates with a variable step size algorithm selected, statistics are printed out for each
state. This output is suppressed if there are no print variables specified. For each state the number of
steps that failed to meet the specified error and had to be retaken with a smaller step size is listed
under the 'Fail Count'. Also printed are the number of steps for which the maximum and the relative
error was the controlling error, 'Maximum Control' and 'Relative Control'.

For each step only the state with the largest error has its count incremented in either the 'Maximum
Control' or the 'Relative Control' column depending on which error is controlling. If step had to be
retaken the 'Fail Count' for that state is also incremented. The number of successful steps taken is the
total number of steps in the 'Maximum Control' and the 'Relative Control' columns less the total of
the 'Fail Count' column. In the case of Figure 6−2, there were 50 successful steps taken.

Since the maximum error must have units is it possible for the maximum error to swamp the relative
error if state value never exceeds unity. A zero in the 'Relative Control' column indicates that the
maximum error specification is dominating the error control for this state. This is not necessarily a
defect but it is worth investigating.

In the above example the maximum error for the third element of the x state vector is dominating the
error control but a plot of the third element shows its maximum value is about −0.2. Because this is
less than 1 the maximum error always controls when it and the relative error have the same value.
For this example a relative error specification of 0.055 is sufficient to make the relative error
dominate.

6.4 A Modified State Space System

38

References

[1] Conte, S.D. and de Boor, C., Elementary Numerical Analysis, 1972, McGraw−Hill.

[2] Thomas, B., The Runge−Kutta Methods, Byte, April 1986, pp. 191−210.

[3] Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T., Numerical Recipes, The Art
of Scientific Computing, 1986, Cambridge University Press.

[4] Gear, C.W. "The Automatic Integration of Ordinary Differential Equations", Communications of
the ACM, Vol. 14, No. 3, pp. 176−190, March 1971.

6.4 A Modified State Space System

39

Chapter 7

User Events

In addition to the simulation event queue SimGauss also has a user event list. This is a very flexible
and powerful mechanism for controlling the progress of the simulation. This chapter describes user
events and illustrates how they can be used to introduce disturbances into the simulation.

7.1 User Event Keywords

There are two types of events in SimGauss. The first type is generated by the SimGauss translator
from the model's DISCRETE sections. (Refer Chapters 3 and 4.) These DISCRETE event
procedures can only be SCHEDULEd from within the simulation itself. The other type of event is
the user event keyword.

The user event keyword, as the name suggests, is a keyword procedure written by the user. It can be
added to the user's event list using the SimGauss ADDEVENT command. This command specifies
at what time during the simulation the keyword is to be executed. When the simulation is run using
either START or GO, each keyword on the user event list, whose specified time is later than the
current time, is transferred to the simulation event queue. The keywords are then executed at the
specified time in the same way as any other simulation events.

The CLREVENT command is provided to remove keywords from the user event list, to clear the
user event list and to display the user event list.

Typical uses for user event keywords are to introduce changes into the simulation at particular times.
These could be, for example, applying step changes to states, turning on and off disturbance forces,
switching controller modes, changing integration algorithms, etc.

Since GAUSS keywords can not return results all modifications carried out by user event keywords
must be via global variables, or by calling SimGauss or GAUSS commands. When a user event
keyword is executed by SimGauss it will be passed an empty string as its argument.

This is a very powerful facility and can easily invalidate your model if you are not careful. For
example changing the dimensions of any of the variables in your model is likely to cause trouble.
Trying to assign values to the model's derivatives will also not work as the these will be
re−calculated at the beginning of the next integration step. Also calling SimGauss or GAUSS
commands that RUN files, such as SIMGAUSS, PRTVARS, PLOTVARS and RUN, will

40

terminate the simulation and return you to the GAUSS command mode.

7.2 User Event Example

The Digitally Controlled Spring System of Chapter 4, A Full Model, will be used to illustrate how
user event keywords can be used to introduce disturbances into the system. The disturbance will be
in the form of a step change in the velocity of the mass at 1.6 sec. This is equivalent to giving the
mass a sharp tap.

After compiling the ctrlsprg.sgm model, the following user event keyword is defined to produce a
step change in the velocity. (If you define this keyword from the GAUSS command mode, press
Ctrl+Enter keys at the end of the lines to prevent GAUSS from trying to compile an incomplete
procedure. Press the Enter key after the endp; to compile the keyword procedure.)

keyword tap(str);
logdata(1);
v = v + 2;
logdata(1);
endp;

Having defined tap, ADDEVENT is used to put this keyword on the user event list to be executed
at 1.6 sec.

addevent("tap" , 1.6);

The print and plot variables also need to be specified before STARTing the run.

prtvars xi ri v;
plotvars t xi ri v;
prtint(10);
clrevent;
start;

The CLREVENT command has been used to display what is on the user event list prior to running
the simulation. As usual START is used to run the simulation.

7.2 User Event Example

41

Figure 7−1

Figure 7−2 shows a plot of the results using the PLOTXIRI procedure defined in the model code.
Comparing this plot to Figure 4−3 clearly shows the effect of the sharp tap applied at 1.6 sec.

7.2 User Event Example

42

Figure 7−2

Finally, the user event list is not cleared by running the simulation, so running the model again will
produce exactly the same results.

7.2 User Event Example

43

Chapter 8

Embedded Simulations

SimGauss models can be run from within other GAUSS procedures. This enables GAUSS' powerful
non−linear equation solvers and optimization procedures to be used to solve non−linear differential
equation problems and to optimize system parameters.

To include a simulation within another procedure is as simple as adding START or GO to that
procedure's code. At the end of the run the results of the simulation are available in the model's
global variables. Note however, if any of the dimensions of the states, or print or plot variables have
changed since the last START or SIMGAUSS command, then the procedure in which START or
GO is embedded will not be returned to when simulation run terminates. An initial START or GO
must be executed from the GAUSS command mode to recompile all the necessary SimGauss
procedures before starting the simulation proper.

This chapter contains two examples of embedded simulation. In the first example SimGauss is used
together with the optional GAUSS Non−linear Simultaneous Equations module to solve a two−point
boundary value problem. The second example makes use of the optional GAUSS Optimization
module to identify the parameters of a chemical reactor.

8.1 Two Point Boundary Value Problem

The first example of embedding a simulation within a GAUSS procedure will solve the following
two point boundary value problem [1] using the optional GAUSS Non−linear Simultaneous
Equations module, NLSYS.

To solve this problem using SimGauss, the problem needs to be reformulated into an initial value
problem. This is done by assuming a value for y'(0) = dy/dt at t = 0, running the simulation to t = 1,
and checking the resulting y(1). NLSYS adjusts the assumed value of y'(0) until y(1) has the desired
value.

The model code required to solve this problem is contained in twopoint.sgm.

44

1. /* twopoint.sgm
2. ** Non−linear two point boundary value problem. */
3.
4. library simgauss,nlsys;
5. #include nlsys.ext;
6. nlset;
7.
8. stoptime = 1; /* stop run at 1 sec. */
9. /* define the conditions that are known */
10. y1 = 1; /* required y at t = 1 */
11. I_y = 0;
12.
13. DYNAMIC(0.1);
14. d_dy = −(1+exp(y));
15. d_y = dy;
16. END_DYN;
17.
18. proc fsys(x);
19. i_dy = x;
20. _sgkey = 0; call start; _sgkey = 1;
21. retp(y1−y);
22. endp;
23.
24. proc solve(dY0,tol);
25. local x,f,j,tcode;
26. stoptime = 1.0; /* stop run at 1 sec. */
27. _nlfvtol = tol;
28. __altnam = "i_dy";
29. __title = "Two Point Boundary Value Problem";
30. __output = 1;
31. output file = twopoint.out reset;
32. {x,f,j,tcode} = nlprt(nlsys(&fsys,dY0));
33. output off;
34. i_dy = x;
35. retp(x);
36. endp;

Lines 4 to 6 set up the required libraries and initialize NLSYS. Lines 8 to 11 set up the constants
need for this simulation. Although unassigned initial conditions are assumed to be zero, i_y is
explicitly set to zero here to ensure any old values left in the GAUSS workspace are not used by
mistake.

Lines 14 and 15 define the derivative equations. d_dy is the second derivative of y.

Lines 18 to 22 define the FSYS procedure, which will be called by NLSYS to solve the two point
boundary value problem. The procedure is passed one parameter, the initial value of dy. After
setting i_dy to this value the simulation is run and the error between the value of y at 1 sec and the
required value, y1, is returned. START is CALLed to suppress the run time message which is
normally returned. The SimGauss global variable _sgkey is set to zero before calling START to

Chapter 8 Embedded Simulations

45

disable the keyboard check for the user interrupt key, H

The solve procedure (lines 24 to 36) is the main executable procedure which takes as arguments an
initial guess for dy at t=0 and the required accuracy of the answer. It returns the value of i_dy
required to give y(1)=1.

Line 26 sets stoptime to 1. This ensures that each simulation run stops at exactly t=1. Lines 27 to 30
set the NLSYS global variables. Line 31 sets the output file and line 32 calls NLSYS to solve for the
initial condition. Line 34 assigns the result returned by NLSYS to i_dy before returning its value.

After translating the model and clearing the print variables the solve procedure is used to find the
value of i_dy.

simgauss examples\twopoint;
prtvars clearall;
solve(1,0.001);

Figure 8−1 shows the results of the solve procedure using the initial estimate of 1.0 for i_dy and
an accuracy tolerance of 0.001.

The PRTVARS clearall command was used to clear the print variables so that not even the default
print variable, t, is displayed during each run.

Chapter 8 Embedded Simulations

46

Figure 8−1

8.2 Identification of a Chemical Reactor

The second example identifies the reaction rates of a chemical reactor assumed to have the following
model

8.2 Identification of a Chemical Reactor

47

Where A,B and C are the concentrations of the three reactants and k1,k2 and k3 are the three
reaction rate constants. The reactor model can be expressed in differential equations as

The available experimental data for the concentrations is

Time A B C
0 0.732 0.0 0.0
3 . 0.49 0.0957
6 0.0373 0.481 0.229
9 0.00835 0.399 0.345
12 0.00189 0.342 0.406
15 0.000419 0.276 0.467

Note that the measurement of concentration of A at 3 seconds is missing.

To identify the reaction rate constants using GAUSS' optional Optimization module two files are
required. The first file contains the SimGauss model code which will predict the concentrations, A,B
and C given a set of reaction rate constants. The second file contains the command file to run
OPTMUM to do the estimation. Read the section on the Optimization in the GAUSS Applications
Manual for the details of the OPTMUM procedure.

8.2.1 SimGauss Model File

The SimGauss code is contained in the file chemr.sgm.

1. /* chemr.sgm Chemical Reaction Identification */
2.
3. /* This is simulated data +/−3% normal errors */
4. data = { 0 0.732 0 0,
5. 3 . 0.49 0.0957,
6. 6 0.0373 0.481 0.229,
7. 9 0.00835 0.399 0.345,
8. 12 0.00189 0.342 0,
9. 15 0.000419 0.276 0.467 };
10. /* Data must have unique times and */
11. /* be in increasing time order */
12.

8.2.1 SimGauss Model File

48

13. /* Actual values for k1 k2 k3 */
14. k1 = 0.5; k2 = 0.1; k3 = 0.03;
15. stoptime = 1000; /* must be greater than 15 */
16.
17. INITIAL;
18. first = 1; /* set flag */
19. i_A = data[1,2]; i_B = data[1,3]; i_C = data[1,4];
20. mdata = zeros(rows(data),cols(i_A~i_B~i_C));
21. END_INIT;
22.
23. DYNAMIC(1.0); /* start of DYNAMIC section */
24. C = i_A + i_B + i_C − A − B;
25. d_A = −k1*A;
26. d_B = k1*A + k3*C − k2*B;
27. END_DYN;
28.
29. DISCRETE("PROCESS",0); /* this is scheduled */
30. if first;
31. r_data = 1; /* set first row */
32. /* schedule first PROCESS */
33. schedule("PROCESS",data[r_data,1]);
34. first = 0; /* finished setup */
35. else; /* not first time */
36. mdata[r_data,.] = A~B~C;
37. r_data = r_data+1; /* update for next row */
38. if r_data > rows(data); /* finished */
39. call HALT(1); /* set halt flag */
40. else; /* schedule PROCESS for next row */
41. schedule("PROCESS",data[r_data,1]);
42. endif;
43. endif;
44. END_DISC; /* PROCESS */

The Gauss Code section, lines 1 to 16, sets up the experimental data matrix and initial reaction rate
constants. The values for the reaction rate constants are in fact the true values, but any reasonable
values could have been used. It also sets the stoptime out of the way as the length of the run of this
model is set by the maximum time in the first column of the data matrix via the DISCRETE section,
PROCESS.

The INITIAL section, lines 17 to 21, sets the flag first, the initial values of the concentrations and
zeros out the model data matrix, mdata. Lines 23 to 27 are the DYNAMIC section of the model and
calculate the varying concentrations over time.

The DISCRETE section PROCESS, lines 29 to 44, controls the saving of the simulation results and
the stopping of the run. Each time the model is run using the START command, the INITIAL,
DYNAMIC, all DISCRETE sections and the DATALOG section are executed in the order in which
they appear in the model. This is to ensure that all the variables are initialized ready for the first data
logging and that all DISCRETE sections are properly SCHEDULEd. In this case the INITIAL

8.2.1 SimGauss Model File

49

section sets the flag first so that when the DISCRETE section, PROCESS, is executed as part of this
setting up procedure it initializes the row number of the data matrix to 1 and then SCHEDULEs
itself to execute at the first time experimental data was collected and clears the first flag (line 34).

Subsequent calls to PROCESS occur at the times given in the first column of data. At each time the
concentrations are saved in the model data matrix, mdata, (line 36) and the data row index, r_data,
incremented. If the experimental data points have been exhausted HALT(1) is called to terminate the
run, otherwise PROCESS is re−scheduled at the next experimental data time. Using this form of
model allows more points to be added to the data matrix without having to modify the rest of the
model.

This file is first compiled using the SIMGAUSS command. Then after checking it functions correctly
some runs should be made for various values of k1,k2 and k3 to select some reasonable starting
values for the optimization. Also as the simulation will be run many times during the optimization
process it is worth selecting an integration algorithm, step size and error settings which minimize the
run times consistent with providing the required accuracy in the results. To allow for the variations in
the reaction rate constants that will occur as the optimization proceeds, a variable step size
integration algorithm RKF4 was chosen. The default values for MERROR and RERROR of 1e−4
give acceptable accuracy for the results, while a INITSTP and MAXT of about 1 second gives the
minimum run time.

8.2.2 OPTMUM Model File

At each iteration OPTMUM will select values for the constants k1,k2 and k3 and then run the
simulation to generate the predicted values for the concentrations at the experimental measurement
times. From these values, stored in mdata, the moment matrix of the deviation of the predicted
values from the observed values will be computed. From the moment matrix the log−likelihood
function will be computed.

Having defined the model file, a command file is needed to run OPTMUM. This file sets up the
various constants needed by OPTMUM and defines the function which OPTMUM calls to calculate
the log−likelihood for a given set of reaction rate constants. This procedure, call ESTIMATE, will
call START to run the simulation model and then calculate the log−likelihood function from the
results. The following code is contained in the file chemr.opt.

1. /* chemr.opt Chemical Reactor Identification */
2. library simgauss, pgraph, optmum;
3. #include optmum.ext;
4. optset;
5.
6. /* calculate number of observations taking */
7. /* into account missing values */
8. nobs = data[.,2:4] .$/= miss(0,0);
9. nobs = nobs'*nobs;

8.2.2 OPTMUM Model File

50

10.
11. Proc(1) = estimate(p);
12. local sigma;
13. k1 = exp(p[1]); k2 = exp(p[2]); k3 = exp(p[3]);
14. _sgkey = 0; call START; _sgkey = 1;
15. sigma = moment(mdata−data[.,2:4],2)./nobs;
16. retp(ln(prodc(diag(sigma))));
17. endp;
18.
19. call maxt(1); call initstp(1); /* set steps sizes */
20. intalg rkf4; /* select variable stepsize algorithm */
21. /* set data logging and the stoptime out of the way */
22. stoptime = 1000; call datastep(1000);
23.
24. _opparnm = 0$+"ln(k1)" | 0$+"ln(k2)" | 0$+"ln(k3)";
25. __title = " Chemical Reactor Identification";
26.
27. x0 = ln(0.6)|ln(0.15)|ln(0.1); /* initial guess */
28. output file = chemr.out reset;
29. print "\r\l Initial values " exp(x0');
30. {x_fin,f_fin,g_fin,retcode}=optprt(optmum(&estimate,x0));
31. k1=exp(x_fin[1]); k2=exp(x_fin[2]); k3=exp(x_fin[3]);
32. print " k1 = " k1 " k2 = " k2 " k3 = " k3;
33. output off;

Lines 2 to 4 set the optimization library and reset OPTMUM's global variables. Lines 8 and 9
calculate the number of observations, nobs, for each element of the moment matrix to take into
account the missing observation at 3 seconds. If there were no missing data then nobs would be the
number of rows in data.

The procedure ESTIMATE is defined in lines 11 to 17. It is this function which OPTMUM calls to
calculate the log−likelihood of a particular set of parameters. OPTMUM passes the values for
ln(k1), ln(k2) and ln(k3) as a vector p to this procedure and expects a single return value, the value
of the function to minimize. Since all the reaction constants must be positive the log of the constants
is estimated. The procedure ESTIMATE first transfers the parameter values to the model's reaction
rate constants (line 13) and then runs the simulation for these values. The SimGauss global variable
_sgkey is set to zero before calling START to disable the keyboard check for the user interrupt key
. This allows OPTMUM to be controlled from the keyboard during the optimization process.

The moment matrix of the deviation of the predicted values, mdata, from the observed values, data,
is computed on line 15. From the moment matrix the log−likelihood function is computed and
returned on line 16.

Normally line 16 would read retp(ln(det(sigma))); however in this case there are not enough
observations to identify all the components of the moment matrix. Therefore only the diagonal
elements of the moment matrix are used. This is the same as assuming that the model's errors are
independent. The likelihood function being optimized here is the concentrated log−likelihood, i.e.,

8.2.2 OPTMUM Model File

51

the error covariance matrix has been factored out of the likelihood.

Lines 19 and 20 set the maximum and initial step sizes and the integration algorithm as determined
during testing of the model. Line 22 sets the data logging interval and the stoptime out of the way.
Lines 24 and 25 set the global parameters for the OPTMUM procedure.

The initial values for the reaction rate constants to be used as a starting point by OPTMUM are set
on line 27 and OPTMUM is called on line 30.

8.2.3 Estimating the Parameters

Having translated the chemr.sgm file using the SIMGAUSS command, all the print variables are
cleared to prevent SimGauss producing screen output while OPTMUM has control. Then the
optimization is started by running the chemr.opt command file.

simgauss examples\chemr;
prtvars clearall;
run examples\chemr.opt;

At the end of the optimization k1,k2 and k3 are assigned the optimum estimates of the reaction rates
(line 31). In this case k1 = 0.496, k2 = 0.104 and k3 = 0.0299.

8.2.4 Plotting the Results

To plot the results of the optimization, SGXY could be used as before, however the Publication
Quality Graphics package requires considerable memory and may not be able to run with SimGauss
and OPTMUM loaded on computers with limited memory. In these cases the following commands
can be used to save the plot matrix in a GAUSS data set then reload it for plotting using the
Publication Quality Graphics.

plotvars t a b c;
datastep(0.33);
start;
sgsavep chemr;
saveall chemr;
new;
library simgauss, pgraph;
sgloadp chemr;
title("Chemical Reactor (Optimized Parameters)");
_plegstr = " A\000 B\000 C";
_plegctl = 1;
load _psym = examples\chemrsym;

8.2.3 Estimating the Parameters

52

sgxy T,A B C;

After generating the plot matrix for the optimal parameters it is saved using SGSAVEP. Then, after
save the current workspace, the workspace is cleared, the Publication Quality Graphics library is set
and the plot matrix reloaded using SGLOADP. (Refer to the Section 1.2 'Customizing SimGauss' in
the Introduction for a fast way of loading the plot routines.)

The original experimental data points are stored in chemrsym.fmt in a form suitable for assigning to
the Publication Quality Graphics variable _psym which will plot the data points on the graph. Figure
8−2 compares the experimental data to the results of the model using the optimal rates.

Figure 8−2

References

[1] The SCi Continuous System Simulation Language (CSSL), Simulation, December 1967, pp.
281−303

8.2.3 Estimating the Parameters

53

Chapter 9

Debugging Models

Debugging SimGauss models is not very different from debugging any other GAUSS program once
you understand the steps involved in compiling a SimGauss model. Read the chapter on Error
Handling and Debugging in the GAUSS Manual first.

There are three types of errors that can occur: translation errors, compile errors and execution errors.
These will be discussed in the light of the steps SimGauss takes to compile and execute a model. The
SimGauss debugger will also be discussed as well as the changes SimGauss makes to the GAUSS
environment when it runs a model.

9.1 Translation errors

Before compiling the model, SimGauss scans the model code in the .sgm file to identify the states
and to break the model up into the necessary procedures.

The .sgm file is not changed in any way by the translation process and the line numbers given in the
translator error messages refer to the .sgm file. All translator error messages are written to the error
file, simgauss.err and to the output screen.

The translator preforms a minimal amount of error checking on the model code. The translator is
primarily looking for derivative statements, in order to determine the model states, and for SimGauss
section commands, which define the start and end of the various sections of the model.

The SimGauss section commands are paired. Table 9−1 shows the section command pairs (also see
Figure 3−1).

Table 9−1
SimGauss Section Command Pairs

INITIAL, END_INIT
DYNAMIC, END_DYN
DISCRETE, END_DISC
DATALOG, END_DL

TERMINAL, END_TERM

54

Only the DYNAMIC, END_DYN pair are compulsory. All the others are optional. However if they
appear in the model they must appear in the order shown or the translator will abort with an error.
The DISCRETE, END_DISC pair is the only pair of section commands that may be used more than
once.

The translator ignores all comments delimited by /* and */ but treats comments as delimiters, just as
if they where replaced by a space character. Any @ symbols found outside comments or strings are
flagged as errors. The translator does not support the @ form of GAUSS comments.

The opening pair of double quotes for strings must be matched by a closing pair of double quotes on
the same line or the translator will abort with an error message. Long strings can be continued on the
following line by using "\ at the end of the first line of the string. Carriage returns and line feeds can
be inserted into strings using the special character pairs \r and \n inside the double quotes.

SimGauss section commands must be at the beginning of a GAUSS statement in order to be
recognized by the translator. A common error is not to have the previous statement terminated by a
semi−colon. The translator then misses the section command altogether and generates an error when
the next section command in encountered.

From the .sgm file the translator produces two other files. The .sgs file, which defines all the model's
states and initializes them in the GAUSS workspace, and the .sgp file, which contains the procedures
produced from the model code.

The procedures generated by the translator for each section of the model are given in Table 9−2.

Table 9−2
SimGauss Model Procedures

 Gauss Code None

 INITIAL Section SGP_INIT

 DYNAMIC Section SGP_DYN

 DISCRETE Section(s) Procedure name given in DISCRETE statement

 DATALOG Section SGP_DL

 TERMINAL Section SGP_TERM

 Gauss Procedures Names unchanged

The Gauss Code section of the model is not transferred to the .sgp file except for comments and
#LINESON; and #LINESOFF; statements. No procedures are generated by the translator for this
section of the model.

Chapter 9 Debugging Models

55

The model code in the INITIAL, DYNAMIC, DATALOG and TERMINAL sections is not changed
in any way. All the code, except the SimGauss section commands and the DECLARE statements, is
transferred unchanged to the body of the respective procedure. The DECLAREs are filtered out to
prevent redefinition errors when the three files are compiled by SimGauss.

The DISCRETE sections are handled a little differently. Part of the DISCRETE statement contains
the name to be used for the procedure written by the translator. The translator generates a procedure
of that name whose body is the model code in that DISCRETE section. The last line of the procedure
is the original DISCRETE statement which re−SCHEDULEs the procedure to execute at its next
repetitive time. If the repetition time is zero when this DISCRETE statement is executed the
procedure will not be re−SCHEDULEd.

The Gauss Procedures section of the model is not copied to the .sgp file. No addition procedures are
generated by the translator for this section of the model.

In addition to generating the .sgs and .sgp files, which are opened in the same directory as the .sgm
file, the translator uses some temporary files. These temporary files are opened in the current default
directory. The temporary files are deleted when the translator terminates.

9.2 Compilation Errors

If the translator finds no errors in the .sgm file, SimGauss then RUNs the three files, .sgs, .sgm and
.sgp in that order, to compile the model ready to be run with the START command.

9.2.1 .sgs File

When the .sgs file is RUN it defines all the state variables as global variables in the GAUSS
workspace. All the state variables are then set to GAUSS' missing value code.

The .sgs file also defines all the initial value, maximum error and relative error variables as globals
in the GAUSS workspace. Any of these variables that were not already initialized are set to zero.

If any of these variables already exist in the GAUSS workspace but are defined as other than scalars
or column vectors, then an appropriate error message is printed and SimGauss returns to the GAUSS
command mode.

9.2.2 .sgm File

The .sgm file, containing the user's model code, is then RUN. Since the model sections in this file
are not enclosed in procedures, all the model variables are compiled as globals in the GAUSS
workspace. They are then accessible from all other procedures and also interactively from the
GAUSS command mode.

9.2 Compilation Errors

56

SimGauss does not attempt to sort the model code, so all variables must be defined before they are
referenced, just as for normal GAUSS programs. In general this means that variables must appear on
the left−hand side of an equals sign or in an EXTERNAL statement before they can be used in an
equation or procedure call.

The exceptions to this are the state variables, the initial conditions and the maximum and relative
error variables. These variables have all been set up in the GAUSS workspace by the .sgs file prior to
compiling the model code contained in the .sgm file. However the state variables contain missing
values until after the INITIAL section of the model has been executed, so do not use them on the
right−hand side of equations in the Gauss Code or INITIAL section of the model.

If SimGauss is being run with AUTODELETE OFF then any procedures defined in the .sgm file
need to have an associated EXTERNAL statement in the GAUSS code section of the model.

When the GAUSS compiler finds an undefined symbol it assumes it is a procedure. With
AUTODELETE OFF after the compilation has terminated, GAUSS still has the symbol identified as
a procedure so the next compilation will also fail unless the symbol is cleared from the workspace.

This can be done with either NEW or DELETE but in either case the GAUSS workspace will be
completely overwritten with the SimGauss code the next time SIMGAUSS is executed. This is
because the SimGauss procedures with global references are also deleted when DELETE is used and
so SimGauss needs to be reloaded.

If AUTODELETE is ON, DELETE will be executed automatically by GAUSS at the end of the
compilation, if there were any compilation errors. However with AUTODELETE ON any typing
error is also likely to result in an undefined procedure error which will delete all procedures with
global references, i.e. most of the SimGauss procedures and your model procedures. This will
require you to reload SimGauss and re−compile your model. AUTODELETE ON is the default
setting for GAUSS but for use with SimGauss it is more convenient to set it to OFF using the
GAUSS menu Configure, Preferences − Compile Options.

After compiling the .sgm file GAUSS executes it. This executes any Gauss Code section of the
model that appears at the top of the .sgm file. Any execution errors in the Gauss Code section are
reported by GAUSS at this time and SimGauss will return to the GAUSS command mode. If a
#LINESON; statement appears at the beginning of the model code, then GAUSS will report the line
number of the offending statement. Since this code is a GAUSS program no active procedure name
message will be give after the error message. Execution time error messages caused by any other
section of the model will give the active procedure name shown in Table 9−2.

Certain commands in the Gauss Code section will cause SimGauss to terminate and return to the
GAUSS command mode without completing the compilation of the model. These are any commands
which RUN files, such as PRTVARS and PLOTVARS, also any PRINT commands which do not
perform a Carriage Return before the end of the Gauss Code section, and any LOCATE commands.

9.2 Compilation Errors

57

PRINT;; and LOCATE statements will cause SimGauss to abort the compilation with an error
message. The restriction on the use of RUN statements applies to all sections of the model code, but
PRINT and LOCATE statements can be used freely in any section of the model other than the
Gauss Code section.

When execution reaches the INITIAL or DYNAMIC statement further execution of the .sgm file is
aborted and the .sgp file is RUN. This is why statements in the Gauss Procedures section of the
model, which are outside procedures, are never executed.

9.2.3 .sgp File

The .sgp file contains the model code as procedures which are CALLed by SimGauss during the
simulation. Since the model sections which are enclosed by SimGauss section commands are
translated into procedures, these sections should not contain any procedure definitions or any
GOTOs which branch outside the section. Also IF and DO statements must not extend outside the
section.

After compiling the .sgp file SimGauss evaluates the INITIAL section of the model and transfers the
initial values to the model's states. SimGauss then executes the DYNAMIC section of the model, all
the DISCRETE sections and the DATALOG section, to initialize all the model's variables. No
DISCRETE sections are SCHEDULEd during this phase of the execution. The DISCRETE sections
are executed strictly in the order they appear in the model.

The dimensions of the states and the derivatives are checked after executing the DYNAMIC section
and after each of the DISCRETE sections are executed. If any of the dimensions have changed an
error message is displayed indicating the state or derivative effected.

As the DISCRETE sections are also executed in this order each time the model is STARTed you can
check at this stage that the model will start in the correct state. For example if there are two
DISCRETE sections, one to turn a switch on and one to turn it off, by arranging the order of the
sections the model can be made to start in either state. Alternatively a user event to be executed at i_t
can SCHEDULE the appropriate DISCRETE section to also execute at i_t to set the model to the
correct state.

Finally the .sgp file generates and RUNs the state transfer procedure and returns to the GAUSS
command mode with the message
 Use START to run the model.

9.3 Execution Errors

Execution errors in the Gauss Code section of the model will be reported when the .sgm file is RUN
by the SimGauss compiler as explained above. Other execution time errors generated by the model

9.2.3 .sgp File

58

code will occur when the respective procedures listed in Table 9−2 are executed.

The INITIAL, DYNAMIC, DATALOG and all the DISCRETE sections of the model are executed
once with the model's initial conditions, as part of the SimGauss compilation process. Note that this
means that the INITIAL section of the model has already been executed once before the first
START command runs the model so care must be taken in the use of counters which are
incremented in the INITIAL section.

The INITIAL section of the model can use any variables already defined in the GAUSS workspace,
including those defined in a preceding Gauss Code section. Do not use the state variables themselves
in the INITIAL section as the initial conditions are not transferred to the states until after the
INITIAL section is executed. It should always be possible to write the initial conditions in terms of
variables already defined.

Unlike the rest of the model's sections, the first time the TERMINAL section is executed is at the
end of the first run. Although execution time errors in the TERMINAL section will cause the
simulation to abort, you can usually recover the results of the simulation from the model's global
variables. However it is wise to try a short run first to test out the entire model.

As all compilation of the model is done with line number tracking off, to assist with locating
execution errors #LINESON; and #LINESOFF; statements may be put in the model code and these
will be copied over to the .sgp file so that line numbers will be available for the model procedures.
Any line numbers given for execution errors in the model's INITIAL, DYNAMIC, DATALOG,
TERMINAL or DISCRETE procedures refer to the .sgp file. Look at that file to locate the model
statement that has caused the error, then edit the .sgm model code file to correct the error and call
SIMGAUSS to recompile the model.

The Gauss Procedures section of the model is not copied to the .sgp file so the line numbers for any
errors in these procedures refer to the .sgm file.

Extensive error checking is performed in the SimGauss commands and you should receive a useful
error message if you use them incorrectly. You should not normally encounter a GAUSS execution
error which refers to an internal SimGauss procedure, i.e. a procedure whose name starts with 'S_'.
The exception to this is the S_PLOT routine. S_PLOT will terminate if the SimGauss plot matrix,
where the plot variables are saved, exceeds the maximum size allowed for a GAUSS matrix.

Also since user event keywords can change any of the model's global variables you can easily
generate GAUSS errors such as

 (0):error G0047:Rows don't match
or
 (0):error G0036:Matrices are not conformable

9.2.3 .sgp File

59

Other than this, if you do get an error message referring to an internal procedure, please report it and
how it was generated.

9.4 SGDEBUG

A debugging procedure, SGDEBUG, is provided to give some information on what SimGauss is
doing internally. The purpose of SGDEBUG is twofold, to assist the user in tracking his model's
execution and to clarify possible SimGauss problems. Later releases will not necessarily provide the
same information.

Large volumes of output are generated by the debugger so it is advisable only to turn it on when
required. For example

sgdebug(t>1.5 and t<1.6);

will turn the debugger on when the time is between 1.5 and 1.6. This statement is best placed in the
DYNAMIC section.

The SimGauss debugging is turned off quietly each time a model is compiled.

9.5 SimGauss Defaults

9.5.1 Print Format

The SimGauss print format used to output data at each data logging interval is controlled by the
GAUSS FORMAT command.

9.5.2 Other Defaults

When SimGauss is loaded the default integration algorithm is Runge−Kutta 4th order, there are no
plot variables specified, the time, t, will be printed each data logging interval and the user interrupt
key, H, is enabled.

9.4 SGDEBUG

60

SimGauss Reference

Command Summary

Model Sections
 INITIAL start of the INITIAL section.

 END_INIT end of the INITIAL section.

 DYNAMIC start of the DYNAMIC section.

 END_DYN end of the DYNAMIC section.

 DISCRETE start of a DISCRETE section.

 END_DISC end of a DISCRETE section.

 DATALOG start of the DATALOG section.

 END_DL end of the DATALOG section.

 TERMINAL start of the TERMINAL section.

 END_TERM end of the TERMINAL section.

Printing and Plotting
 DATASTEP set the interval between data logging.

 LOGDATA force data logging.

 PLOTVARS specify variables to be saved for plotting.

 PRTVARS specify variables to be printed.

 PRTINT specify the number of data logging intervals
 between printing outputs.

 SGXY xy plot of variables from plot matrix.

 SGLOGX logx plot of variables from plot matrix.

 SGLOGY logy plot of variables from plot matrix.

 SGLOGLOG loglog plot of variables from plot matrix.

 SGPLTVAR extract variables from plot matrix.

 SGSAVEP save plot matrix to data set.

 SGLOADP load plot matrix from data set.

 KEEPPLOT prevent plot matrix from being over written
 each run.

61

Simulation and Integration
 SIMGAUSS translate and compile model.

 START run the model from its initial conditions.

 GO continue the model run from where it was halted.

 REINIT set initial conditions to the current states.

 INTALG select integration algorithm.

 MAXORD set the max. integration order.

 INITSTP set the initial integration step size.

 MAXT set the max. integration step size.

 MINT the min. integration step size.

 MERROR set the maximum state errors.

 RERROR set the relative state errors.

 i_t initial time to integrate from. 5

 stoptime final time to integrate to.

 _sgkey controls scanning of keyboard for user interrupt.

 errmint error flag for variable step size algorithms.

Trimming and Linearization
 SGLIN linearize model around the current state.

 OBSERV set the observable variables for the linearized model.

 CONTROLS set the controllable variables for the linearized model

 STATES display the model's states.

 SGTRIM trim the model for steady state conditions.

 FREEZE remove states from the trim process.

SimGauss Reference

62

Event Handling
 ADDEVENT add user event keyword to list.

 CLREVENT clear user event keyword from list.

 EVENTQUE display the event queue.

 HALT set or test the halt flag

 SCHEDULE schedule a DISCRETE section.

Utilities
 BACKLASH backlash or hysteresis.

 BOUND bound input.

 DEADBAND dead band around zero.

 DELAY delay input.

 IMPLICIT solve algebraic equations.

 LIMINT limit a state variable.

 PHYLIMIT limit a second order system.

 QUANTIZE quantize the input.

 SETEPS set SimGauss' epsilon.

 SGDEBUG turn debugging on or off.

 TABLE look up a tabulated function.

SimGauss Reference

63

_sgkey

Purpose
Controls scanning of the keyboard for user interrupts.

Format
_sgkey flag. If non−zero the keyboard is scanned for user interrupts.

If zero the keyboard is not scanned.

Remarks
When _sgkey is non−zero, SimGauss checks the keyboard at each event for the user interrupt
key, H. In the process it consumes all the pending key strokes in the keyboard buffer. If the
model is being run by another GAUSS program such as OPTMUM setting _sgkey to zero
prevents SimGauss from taking the key strokes intended to control OPTMUM.

Globals
_sgkey

_sgkey

64

ADDEVENT

Purpose
Adds a user event keyword to the user event list.

Format
ADDEVENT(keyword , evnttime);

Inputs
keyword string, contains the name of the user event keyword. User event keywords will

always be passed an empty string when executed by SimGauss.

evnttime scalar, the time at which the user event keyword is to be executed.

Remarks
At each START and GO the events in the user's event list, whose specified time is later than
the current time, are transferred to the simulation's event queue for execution at the specified
times.

The procedures formed from the model's DISCRETE sections cannot be added to the user's
event list. They can only be SCHEDULEd from within the model.

Example
addevent("tap",1.0);

This example adds the tap keyword to the user's event list to be executed when t reaches 1.0

See Also
CLREVENT, EVENTQUE, SCHEDULE, SETEPS

ADDEVENT

65

BACKLASH

Purpose
Implements backlash or hysteresis.

Format
BACKLASH(y , x , bklsh);

Inputs
y string, contains the name of the output variable, an Nx1 vector.

This variable must have been assigned a value before the first call to
BACKLASH.

x Nx1 vector or scalar, half the width of the backlash.

bklsh Nx1 vector, the input to the backlash.

Outputs
None. The output specified by y is updated using VARPUT.

Example
backlash("xout",x,0.5);

In this example a backlash of 0.5 is put between x and xout.

backlash("xout", x−(up−down)./2, (up+down)./2);

The second example implements an unequal backlash. The output, xout, will move when the
x is greater than xout + up or less than xout − down. Note that element by element division
has been used to allow for vector arguments.

Source
sg_utils.src

See Also
DEADBAND

BACKLASH

66

BOUND

Purpose
Bounds the input.

Format
y = BOUND(x , botlim , toplim);

Inputs
x Nx1 vector or scalar, the continuous input.

botlim Nx1 vector or scalar, the bottom limit.

toplim Nx1 vector or scalar, the top limit.

Outputs
y Nx1 vector, the bounded output.

Remarks

Each element of y is calculated from the respective elements of the input by

y = botlim when x botlim
y = x when botlim < x < toplim
y = toplim when x toplim

BOUND should not be used to limit a state variable as the integrator will continue to wind up
the state, use LIMINT instead.

Example
y = bound(5|3, 6|4, 3.5)
y
 5
 3.5

Source
sg_utils.src

See Also
LIMINT, PHYLIMIT

BOUND

67

CLREVENT

Purpose
Clears event keyword from user's event list.
 OR
Displays the user's event list.

Format
CLREVENT keyword;
CLREVENT clearall;
CLREVENT;

Inputs
keyword the name of the user event to be cleared. The event keyword of that name

with the largest time is cleared.
If the keyword is clearall, then the entire user's event list is cleared.
If the keyword is not given OR the keyword is not found in the user's event
list, then the current list is displayed.

Example
» addevent("tap",4.5);
» addevent("tap",2.5);
» clrevent tap;
» clrevent;
The SimGauss USER EVENT LIST contains :−
Keyword Scheduled Time
2.5

» clrevent clearall;
Clearing user event list.CODE>

See Also
ADDEVENT, EVENTQUE

CLREVENT

68

CONTROLS

Purpose
Sets the controllable variables for SGLIN.

Format
CONTROLS variables;
CONTROLS clearall variables;
CONTROLS;

Inputs
variables a list of the global numeric column vectors, separated by spaces, to be added to

the existing controllable variables. The names of control variables may not
exceed 6 characters.

If the list contains the name clearall, then the current control variables are
cleared. Variables following clearall are then added to the list of controllable
variables.

If the list is empty the current controllable variables will be displayed.

Indexing of elements is not allowed. The entire vector is controllable.

Remarks
If there are no controllable variables then SGLIN will return missings for the B and D
matrices. Initially there are no controllable variables.

The order of the list of controllable variables displayed by CONTROLS is the order of the
columns of the B and D matrices returned by SGLIN. Model states may not be controllable
variables.

Example
controls u v;

This example adds the variables u and v to the current controllable variables.

See Also
SGLIN, STATES, OBSERV

CONTROLS

69

DATALOG

Purpose
Indicates the start of the model's DATALOG section and sets the initial data logging interval.

Format
DATALOG(interval);

Inputs
interval scalar, if positive, it is the time interval between data logging.

If negative, it is rounded to give the number of integration steps between data
logging.

Remarks
The DATALOG section must not modify either directly or indirectly any variables that
appear in any other model sections. To change the data logging interval from the GAUSS
command mode or from within the model code use the DATASTEP command.

If the interval is positive, it must be greater than SimGauss' epsilon which can be changed
with the SETEPS command. The default epsilon is 20 times the machine's epsilon.

If there is no DATALOG section in the model and DATASTEP has not been used to set the
data logging interval, then the initial data logging interval is set to the initstep argument of
the DYNAMIC statement.

Since the model code in the DATALOG section is put into a separate procedure (SGP_DL)
by the SimGauss translator, you cannot branch out of this section using GOTO statements
and procedure definitions are not allowed in this section. Also IF and DO statements must
not extend outside this section. This procedure is called at each data logging interval before
displaying the print variables and saving the plot variables.

Example
DATALOG(0.01);

See Also
END_DL, DATASTEP, LOGDATA, SETEPS, INITIAL, DYNAMIC, DISCRETE,
TERMINAL

DATALOG

70

DATASTEP

Purpose
Sets the interval between data logging.

Format
interval = DATASTEP(interval);

Inputs
interval scalar, the interval between data logging.

If the interval is zero the current setting is not changed.
If positive, interval, sets the time interval between data logging.
If negative, interval is rounded to give the number of integration steps between
data logging.

Outputs
interval scalar, the previous interval between data logging.

Remarks
The initial interval between data logging is set by the DATALOG statement in the model
code (or the initstep argument of the DYNAMIC statement if there is no DATALOG or
DATASTEP statement).

At each data logging time, the integration time is brought to within half SimGauss' epsilon of
the exact time, with a short step if necessary, and the DATALOG section of the model
executed before saving the plot variables and displaying the print variables. The display of
the print variables is controlled by the PRTINT statement.

Example
dat_tmp = datastep(datastep(0)*2);

This statement doubles the current interval between data logging and saves the previous
interval in dat_tmp.

See Also
DATALOG, PRTINT, LOGDATA, DYNAMIC

DATASTEP

71

DEADBAND

Purpose
Implements a dead band around zero.

Format
y = DEADBAND(x , botlim , toplim);

Inputs
x Nx1 vector, the continuous input.
botlim Nx1 vector or scalar, the dead band in the negative direction.
toplim Nx1 vector or scalar, the dead band in the positive direction.

Both botlim and toplim must be greater than or equal to zero.

Outputs
y Nx1 vector, the output from the dead band.

Remarks
Each element of y is calculated from the respective elements of the input by

y = x + botlim when x < −botlim
y = 0.0 when −botlim x toplim
y = x − toplim when x > toplim

Example
y = deadband(5|−1, 0.3, 2)
y
 3
 −0.7

Source
sg_utils.src

See Also
BACKLASH

DEADBAND

72

DELAY

Purpose
Models a pure time delay.

Format
y = DELAY(x , dlytime , matname , maxrows);

Inputs
x Nx1 vector, the variable to be delayed.

dlytime Nx1 vector or scalar, the time x is to be delayed.

matname string, contains the name of the matrix used to store the past values. This
is automatically initialized during the START procedure but if it already
exists in GAUSS' workspace it must be a matrix.

maxrows scalar, the maximum number of rows allowed in the delay matrix. The
minimum value is 2.

Outputs
y Nx1 vector, the delayed value of x.

Remarks
To calculate the output, the delay time is subtracted from the current simulation time and the
delay matrix searched for two entries that bracket this time. Linear interpolation is then used
to interpolate between these values. If the delay matrix does not have sufficient past values
the simulation terminates with an error message. The output is equal to the initial value of the
input variable until the time has advanced past i_t + dlytime.

DELAY only operates correctly in the DYNAMIC section of the model. Do not use the same
delay matrix in more than one DELAY statement.

The value of dlytime can vary as necessary during the run but for best results it should vary
slowly compared to the integration step size.

The maximum number of rows in the delay matrix can also vary during the model run but
must be at least equal to the number of integration steps between the current time, t, and t−
dlytime.

For variable step size algorithms, dlytime/MINT(0) is an approximate upper limit on the
maximum number of rows needed.

DELAY

73

For fixed step size algorithms, the number of rows needs is approximately
 dlytime * (1/INITSTP(0) + 1/DATASTEP(0))

Example
y = delay(x1|x2|x3, dly1|dly2|dly3, "xdlymat",
xdlyrows);

In this example a column vector of three variables x1, x2, x3 is delayed by the number of
time units specified by the corresponding delay time vector. The matrix, xdlymat, is used to
store the past values of the vector and the variable xdlyrows specifies the maximum number
of rows the matrix may have. The output y is a column vector made up of the delayed values
of x1, x2 and x3.

Globals
The matrix specified by the string, matname.

Technical Notes
Each row of the delay matrix contains one past value of the input variable with the past time
stored in the first column. START fills the matrix with the initial value of the input variable.
The time of the first row is set to i_t and all the other times are set to a large negative number
(approximately the largest negative number the computer can represent).

At the end of each integration step the current values are appended to the top of the matrix
and the matrix trimmed to maxrows.

See Also
MINT, INITSTP, DATASTEP

DELAY

74

DISCRETE

Purpose
Indicates the start of a DISCRETE section in the model code and sets the repetition rate for
the execution of that section.

Format
DISCRETE(procname , period);

Inputs
procname string, contains the name of the DISCRETE section. It must be a valid GAUSS

identifier enclosed in quotation marks. Leading and trailing blanks are not
allowed. A string variable is not allowed.

period scalar, the period at which this DISCRETE section is to be executed.
If the period is zero then the DISCRETE section is not executed, except at the
START, unless SCHEDULEd.

Remarks
The SimGauss translator puts the code in a model's DISCRETE section into a procedure with
the name specified in the string, procname. Each time a DISCRETE section is executed it is
automatically re−SCHEDULEd to execute again at the current time + period, only if the
period is greater than zero. Half SimGauss' epsilon is used to determine if the period is
greater than zero.

When the START command is used to run the model, all DISCRETE sections are executed
once in the order they appear in the model code and any DISCRETE sections with a
non−zero period are SCHEDULEd. Any DISCRETE sections with a zero period are not
automatically SCHEDULEd but are still executed once at the START.

The period may be varied during the simulation.

The DISCRETE statement does nothing when executed from the GAUSS command mode.

Example
DISCRETE("sample",ts);

This statement defines the beginning of a DISCRETE section called sample which is to be
executed every ts time units during the simulation.

DISCRETE("control",0);

DISCRETE

75

This statement defines the beginning of a DISCRETE section called control which is not
executed (except at the START) unless SCHEDULEd by another DISCRETE section.

Technical Notes
Since the model code in a DISCRETE section is put into a separate procedure, you cannot
branch out of this section using GOTO statements and procedure definitions are not allowed
in this section. Also IF and DO statements must not extend outside this section.

See Also
END_DISC, SCHEDULE, START, INITIAL, DYNAMIC, DATALOG, TERMINAL,
SETEPS

DISCRETE

76

DYNAMIC

Purpose
Indicates the start of the model's DYNAMIC section and sets the initial step size for the
integration algorithm.

Format
DYNAMIC(initstep);

Inputs
initstep scalar, the initial integration step size.

Remarks
The SimGauss translator puts the code from the model's DYNAMIC section into a procedure
called SGP_DYN. This procedure is then called by the integration routine to calculate the
states' derivatives. This is the only section of the model which is allowed to contain
derivative statements. Since the model code in the DYNAMIC section is put into a separate
procedure, you cannot branch out of this section using GOTO statements and procedure
definitions are not allowed in this section. Also IF and DO statements must not extend
outside this section.

For fixed step size integration algorithms the integration step size is set by the initstep
argument. This can be changed using the INITSTP command. If MINT has not been used
the set the minimum step size, when the first model is run the minimum step size is set to
INITSTP(0)/100. This limits the smallest step a variable step size integration algorithm may
take. This default minimum step size can be changed using the MINT command, either in the
model code or from the GAUSS command mode.

If there is no DATALOG section in the model and DATASTEP has not been used to set the
data logging interval, then the data logging interval is set to the initstep argument of the first
model run.

Example
DYNAMIC(0.01);

See Also
END_DYN, MINT, MAXT, SETEPS, INITIAL, DISCRETE, DATALOG, TERMINAL

DYNAMIC

77

END_DISC, END_DL, END_DYN, END_INIT, END_TERM

Purpose
Indicates the end of a model section in the SimGauss model code.

Format
END_DISC;
END_DL;
END_DYN;
END_INIT;
END_TERM;

Remarks
END_DISC; ends a DISCRETE model section.
END_DL; ends the DATALOG model section.
END_DYN; ends the DYNAMIC model section.
END_INIT; ends the INITIAL model section.
END_TERM; ends the TERMINAL model section.

See Also
DISCRETE, DATALOG, DYNAMIC, INITIAL, DATALOG, TERMINAL

END_DISC, END_DL, END_DYN, END_INIT, END_TERM

78

errmint

Purpose
Flag which is set if the integration algorithm needs to reduce its step size below the minimum
integration step size.

Format
errmint flag, set to 1 if the last step failed and the next step of a variable step size

integration algorithm would be less than the minimum integration step size.

Remarks
If a variable step size algorithm fails and needs to reduce the step size below the minimum
integration step size, then the error flag errmint is set to 1 and the DYNAMIC procedure,
SGP_DYN, is CALLed. If the errmint flag is still set when SGP_DYN returns, the run stops
with a message.

The TERMINAL section is not executed before terminating, but the derivatives are accurate
for the current state.

Testing the errmint flag allows you to call MINT or change the integration algorithm, using
INTALG, for a few steps to get over a singularity or some other difficult point in the
simulation.

You can also use GO repeatedly to continue the run using the smaller time step. The
simulation will stop again after each step until the required integration step size is larger than
MINT. This allows you to force the integration over a local discontinuity.

Example
if errmint and (1.0E−5 < mint(0));
 call mint(1.0E−5);
 errmint = 0; /* reset errmint */
endif;

In this example the errmint flag is tested in the DYNAMIC section to see if the integration
algorithm wants to reduce the step size below the minimum. If errmint is set and MINT has
not already been reduced to 1.0E−5 then the minimum step size is reduced. The second time
errmint is set the simulation will terminate as MINT is already equal to 1.0E−5.

if errmint;
 /* change to fixed step size integ. alg. */
 intalg rk2; /* uses initial step size */
 init_tmp = initstp(mint(0));

errmint

79

 /* change back in 3 steps */
 schedule("RKF",t+3*mint(0));
 errmint = 0; /* reset errmint */
endif;

discrete("RKF",0);
 /* zero period, needs to be scheduled */
 /* change back to variable step algorithm */
 intalg rkf2;
 call initstp(init_tmp);
end_disc;

In this example if errmint is set INTALG is called to change the integration algorithm to a
fixed step size algorithm. INITSTP is used to set the step size and the previous value is
saved in init_tmp. The SCHEDULE statement schedules a DISCRETE section to switch
back to the variable step size integration algorithm after 3 steps of the fixed step size
algorithm.

The DISCRETE section RKF switches back to the variable step size algorithm and restores
the initial value of INITSTP.

Globals
errmint

See Also
MINT, INITSTP, INTALG, DYNAMIC

errmint

80

EVENTQUE

Purpose
Prints the current simulation event queue.

Format
call EVENTQUE;

Remarks
This is primarily a debugging statement to be inserted in the model code, most likely in a
DISCRETE section or the DATALOG section. It will print a snapshot of the current
simulation event queue to the screen each time it is executed.

Use CLREVENT to print the current user event list.

Example
» eventque;
At time 0.5
The SimGauss EVENT QUEUE contains :−
 Block Name Scheduled Time
 SAMPLE 0.6

In this example the EVENTQUE command was executed from the GAUSS command mode
when the run had stopped at t=0.5 If GO is used to continue the run the event SAMPLE will
execute at t=0.6 The data logging events are not shown on the event queue as these are
handled slightly differently to other events.

See Also
SCHEDULE, CLREVENT, ADDEVENT

EVENTQUE

81

FREEZE

Purpose
Removes states from the trim process.

Format
FREEZE states;
FREEZE clearall states;
FREEZE;

Inputs
states a list of the states, separated by spaces, to be frozen. The states may have optional

numerical indices.

If the list contains the name clearall, all the states except the time state, t, will be
unfrozen. The time state, t, is always frozen and need not be specified. The states
following clearall will then be added to the list of frozen states.

If the list is empty the current frozen states will be displayed.

Remarks
Open loop integrators cannot be trimmed by SGTRIM and the associated state should be
frozen using FREEZE. Open loop integrators are those states which do not effect their
derivative value and have no effect on any of the other states' derivatives and whose
derivative is not effected by any other state. These open loop integrators result in a zero row
or column in the Jacobian and prevent NLSYS from finding a solution. The time state, t, is a
common example of an open loop integrator and is always frozen.

If the dimensions of the any of the state vectors is changed or the model is recompiled, all
states are automatically un−frozen.

Example
freeze x v[1 2];

This example freezes all the components of the state x and the first and second components
of the state v.

See Also
SGTRIM

FREEZE

82

GO

Purpose
Continues the model run from where it was halted.

Format
runtime = GO;

Outputs
runtime string, the duration of run.

Remarks
The GO command is used to continue a run from the state where it was halted. The INITIAL
section of the model is skipped. The stoptime or halt condition must be changed or the run
will halt immediately.

The GO command clears the HALT flag and transfers the user's event list to the simulation
event queue. It then executes the DATALOG section of the model with the SCHEDULE and
LOGDATA operators disabled and outputs the first set of print and plot variables for this
run. If any of the dimensions or names of the print or plot variables has changed since the last
run then the affected procedure is recompiled and GO is executed again.

Then the state equations in the DYNAMIC section are integrated from their current state until
either the HALT flag becomes true, or there is a user interrupt. The TERMINAL section of
the model is then executed before GO returns a string indicating the duration of the run.

If _sgkey is non−zero, a user interrupt can be initiated by pressing the H key.

If GO is called from within another procedure and any of the SimGauss procedures need to
be recompiled, then GO will return to the GAUSS command mode at the end of the run and
not to the procedure which called it. Also, in this case, the runtime string will not be returned.

See Also
START, stoptime, HALT _sgkey

GO

83

HALT

Purpose
Sets or tests the HALT flag.

Format
halt_flg = HALT(test);

Inputs
test any legal expression that returns a scalar.

The HALT flag is set if the result is non−zero.

Outputs
halt_flg scalar, the current setting of SimGauss' HALT flag.

Remarks
When the HALT flag is set the simulation run terminates after the next event, usually a data
logging event. The HALT flag cannot be re−set within the run.

To terminate the run at a particular time use set the stoptime variable.

Example
call HALT(x>0.5);

In this example the HALT flag will be set and the simulation will terminate when the
variable, x exceeds 0.5.

if HALT(0);
 ...
endif;

This is an example of testing the HALT flag and executing a code block if it is set.

See Also
stoptime, TERMINAL

HALT

84

i_t

Purpose
Sets the initial value of time.

Format
i_t scalar, the initial value of time.

Remarks
When START is used to run the model, i_t sets the initial value of time. The default value is
0. REINIT stores the current time in this variable.

i_t is not overwritten when the model is recompiled unless it is explicitly defined in the
model code.

Globals
i_t

See Also
stoptime

i_t

85

IMPLICIT

Purpose
Solves algebraic equations using Wegstein's iteration method.

Format
{ x , errflg } = IMPLICIT(&fn_x , xz , maxerr , maxiter);

Inputs
&fn_x the address of a function or procedure which calculates x given a value for x.

The function must have only one input argument, x, and one return, x.

xz Nx1 vector, the initial value for x.

maxerr Nx1 vector or scalar, the maximum error allowed.

maxiter scalar, the maximum number of iterations allowed.

Outputs
x Nx1 vector, the result of the iterations.

errflg Nx1 vector, 0 if convergence obtained for that element of x.
 xi − fn_x(xi) if that element of x has an error greater than maxerr after maxiter
iterations.

Remarks
IMPLICIT solves algebraic equations using the Wegstein's iteration method. The set of
algebraic equations are contained in the procedure or function, fn_x. This function is iterated
until either

abs(xi − fn_x(xi)) < abs(xi .* maxerr) and
abs(xi − xi−1) < abs(xi .* maxerr) for abs(xi) > 1
 OR
abs(xi − fn_x(xi)) < abs(maxerr) and
abs(xi − xi−1) < abs(maxerr) for abs(xi) < 1

To maintain the vector capability of SimGauss the function or procedure, fn_x(x), must be
able to accept a column vector for x and return a column vector of the same size. The
function or procedure can access any other model variable necessary to solve for x, but it
should not modify any of them.

WARNING : Use of IMPLICIT is costly in time. It is worth the effort to solve the algebraic

IMPLICIT

86

equations explicitly if possible. eg.

y = x − k .* y

can be expressed as

y = x ./ (1+k)

Also the convergence depends on the function and the starting value (See the Technical
Notes below).

Often the last result is a good value for xz for the next call to IMPLICIT.

The errflg can be tested after the call to IMPLICIT to check on convergence. eg.

if not(0==errflg)
 print "IMPLICIT failed to converge!";
 print
 " The errors of non−convergent elements are";
 print (errflg);
 end;
endif;

Example
Solve 1.5*x − tan(x) = 0.1

/* define procedure for evaluating x given x */
Proc(1) = test(x);
 retp((0.1 + tan(x)) ./ 1.5);
endp;

{x, errflg} = IMPLICIT(0, 1e−6, 5);
x
 0.20592170
errflg
 0.00000000

Source
sg_utils.src

Globals
None

IMPLICIT

87

Technical Notes
The iterations may not converge because
 i) maxiter is too small
 ii) the starting value, xz, is too far away from the solution
 iii) the maxerr is too small compared with the roundoff errors
 iv) the solution value has a multiplicity greater than one

 The iterations will also fail if
 i) the secant has a slope of 1, either exactly or due to roundoff errors
 ii) xi = xi−1 and xi /= fn_x(xi) to machine accuracy. This can be
 caused by roundoff error or a very steep slope of the secant.

References
Numerical Methods for High Speed Computers by G.N. Lance, Iliffe, London, 1960, pp
134−138.

IMPLICIT

88

INITIAL

Purpose
Indicates the start of the model's INITIAL section.

Format
INITIAL;

Remarks
The SimGauss translator puts the code from the model's INITIAL section into a procedure
called SGP_INIT. This procedure is then CALLed to calculate the model's initial conditions
each time START is used to run the model.

Technical Notes
Since the model code in the INITIAL section is put into a separate procedure, you cannot
branch out of this section using GOTO statements and procedure definitions are not allowed
in this section. Also IF and DO statements must not extend outside this section.

See Also
END_INIT, DYNAMIC, DISCRETE, DATALOG, TERMINAL

INITIAL

89

INITSTP

Purpose
Sets or displays the initial integration step size.
 OR
Returns the current integration step size.

Format
initstep = INITSTP(initstep);

Inputs
initstep scalar, the desired initial integration step size OR −1.

If initstep is positive and less than SimGauss' epsilon, the current step size
is not changed.
If initstep is −1, the current integration step size is returned.

Outputs
initstep scalar, the previous initial integration step size OR the current integration step

size.

Remarks
The default initial step size is set by the DYNAMIC statement.

For fixed step size algorithms INITSTP sets the step size. Calling INITSTP to change the
initial step size during a run will change the step size for fixed step size algorithms from the
next integration step. Changing to a fixed step size algorithm will set the step size to
INITSTP.

For variable step size algorithms INITSTP is only used when the run is STARTed.
Changing to a variable step size algorithm during a run will leave the current step size
unchanged.

Example
step = initstp(−1);

This example returns the current integration step size. Add step to the print or plot variables
see how the step size is changing.

See Also
MAXT, MINT, MAXORD, SETEPS, DYNAMIC

INITSTP

90

INTALG

Purpose
Selects or displays the integration algorithm.

Format
INTALG algname;
INTALG;

Inputs
algname name of the required integration algorithm.

The available algorithms are :−
euler for Euler's first order algorithm (fixed step size)
rk2 for 2nd order Runge−Kutta (fixed step size)
rk4 for 4th order Runge−Kutta (fixed step size)
rkf4 for 2nd/3rd order Runge−Kutta−Fehlberg

 (variable step size)
rkf4 for 4th/5th order Runge−Kutta−Fehlberg

 (variable step size)
rbs for Richardson−Bulirsch−Stoer

 (variable step size / variable order)
am for Adams−Moulton predictor−corrector

 (variable step size / variable order)
gear for Gear's stiff algorithm

 (variable step size / variable order)

If the algname is missing or not one of the valid algorithms then the list of available
algorithms and the name of the current integration algorithm will be displayed.

When SimGauss starts up the default algorithm is 4th order Runge−Kutta.

Remarks
Eight integration algorithms are provided, three fixed step size algorithms, two variable step
size algorithms and three variable step size, variable order algorithms. These are more fully
described in Chapter 6 of the SimGauss Tutorial, 'Integration Algorithms'.

The recommended algorithms for most physical simulations are the variable step size 2nd/3rd
or 4th/5th order Runge−Kutta−Fehlberg algorithms. These algorithms automatically vary the
step size to maintain the specified state error per step. The 4th/5th order algorithm is for use
with smoother simulations. That is ones which do not have many discontinuities, deadbands,

INTALG

91

table lookups, etc.

However the efficiency of variable step size methods relies on being able to take large steps
over smooth areas of the simulation. Since the maximum step that the integration algorithm
can take is limited by the time to the next event, if you want the finest data logging intervals
without limiting the step size, then use DATASTEP(−1) to datalog at each integration step.

Euler's method is not recommended for any real application. It is included for pedogological
purposes and for error checking.

For fixed step size algorithms INITSTP sets the step size. Calling INITSTP to change the
initial step size during a run will change the step size for fixed step size algorithms from the
next integration step. Calling INTALG to change to a fixed step size algorithm will set the
step size to INITSTP.

For variable step size algorithms INITSTP is only used when the run is STARTed. Calling
INTALG to change to a variable step size algorithm will leave the current step size
unchanged.

At the end of each integration step the DYNAMIC section is executed again to update the
derivatives at the current state in preparation for data logging or the next integration step.

Example
intalg rkf4

This example selects the 4th/5th Runge−Kutta−Fehlberg variable step size algorithm. The
current step size is unchanged.

Globals
errmint

See Also
INITSTP, MINT, MAXT, errmint, MERROR, RERROR

INTALG

92

KEEPPLOT

Purpose
Prevents the plot matrix from being overwritten each run.

Format
KEEPPLOT(boolean);

Inputs
boolean scalar, if zero the plot matrix is overwritten each run. This is the default

when SimGauss is loaded.
If boolean is non−zero, the plot matrix is kept and the next run appends to
it.

Remarks
The plot matrix is only kept if the last call to KEEPPLOT had a non−zero argument and the
names and dimensions of the plot variables have not changed since the last run.

Example
keepplot(1);

The next run, usually a continuation of the last run using the GO command, will append its
plot values to the end of the current plot matrix.

See Also
PLOTVARS, SGPLTVAR, SGXY, LOGDATA, GO, START

KEEPPLOT

93

LIMINT

Purpose
Limits a state variable.

Format
d_x = LIMINT(x , x_dot , botlim , toplim);

Inputs
x the state variable to be limited. Must be a variable name not a constant or

expression.

x_dot Nx1 vector expression for the state derivative.

botlim Nx1 vector or scalar, the bottom limit.

toplim Nx1 vector or scalar, the top limit.

Outputs
d_x the state derivative variable. The state defined by this derivative name must

be the same state as the x input.

Remarks
The left hand side of this statement must be in the form d_state, where state is the state
variable name used for the x input argument.

The LIMINT statement can only be used in the DYNAMIC section of the model.

The state x will always penetrate the limit. Use BOUND to create an auxiliary variable which
will not exceed the limits.

Example
d_pos = limint(pos, velocity, 5, −1);
b_pos = bound(pos, 5, −1);

In this example the state variable pos is limited to 5 and −1. pos is the integral of velocity.
b_pos is the bounded auxiliary variable.

Source
sg_utils.src

LIMINT

94

Globals
The state, x, and the derivative, d_x.

Technical Notes
Before the integrator can be limited, the state must exceed the bound. The smaller the
integration step size and the lower the velocity, the less the state will exceed the bound.

To obtain a variable that never exceeds the bounds use BOUND to create an auxiliary
variable. Do not assign the output of BOUND to the state variable itself as all the state
variables are overwritten by the integration procedure before each call to the DYNAMIC
section of the model.

See Also
BOUND, DYNAMIC

LIMINT

95

LOGDATA

Purpose
Forces data logging.

Format
LOGDATA(boolean);

Inputs
boolean scalar, if non−zero the print variables are also displayed. This is a forced

print regardless of the value of PRTINT. The format of the print variables
is controlled by the GAUSS FORMAT command.

In any case the DATALOG section is called and the plot variables saved.

Remarks
Data logging takes place at each data logging interval and on the termination of the run. Finer
detail can be recorded by using this procedure.

It is often used to force a data logging just before and just after an event has occurred so that
a subsequent plot shows the step change in the variable.

Example
logdata(1)

This statement will cause the DATALOG section to be executed, then the plot variables
saved and the print variables displayed.

See Also
DATALOG, PRTVARS, PLOTVARS

LOGDATA

96

MAXORD

Purpose
Sets or displays the maximum order for the AM and GEAR integration algorithms.
 OR
Returns the current order.

Format
maxorder = MAXORD(maxorder);

Inputs
maxorder scalar, the desired maximum order for the AM and GEAR integration algorithms

OR −1.
If maxorder equals zero when rounded, the maximum order is not changed.
If maxorder equals −1 when rounded, the current integration order is returned.

Outputs
maxorder scalar, the previous maximum order OR the current integration order.

Remarks
The initial maximum order is 7.
The maximum order allowed for AM is 7 and for GEAR is 6.

Example
ord = maxord(−1);

This example returns the current integration order. Add ord to the print or plot variables see
how the integration order is changing.

See Also
INTALG

MAXORD

97

MAXT

Purpose
Sets or displays the maximum integration step size.

Format
maxstep = MAXT(maxstep);

Inputs
maxstep scalar, the desired maximum integration step size. If maxstep is less than

SimGauss' epsilon the current step size is not changed.

Outputs
maxstep scalar, the previous maximum integration step size.

Remarks
The maximum size of the next integration step is determined by

 minc(maxt(0) | time_to_next_event | step_size).

The default MAXT is 1e300.

Example
max_tmp = maxt(maxt(0)*2);

This example saves the previous maximum step size in the variable max_tmp and then
doubles the maximum step size.

See Also
MINT, SETEPS, DYNAMIC

MAXT

98

MERROR

Purpose
Sets the maximum errors for the states and controls.

Format
m_error = MERROR(m_error);

Inputs
m_error scalar, the default maximum error. If m_error is zero, the current default

maximum error is not changed. When SimGauss is loaded the default maximum
error is 1.0E−4.

Outputs
m_error scalar, the previous default maximum error.

Remarks
This command only affects variable step size integration algorithms and SGLIN.

The default maximum error is used for all states and controls which do not have an individual
maximum error assigned, i.e. the associated m_state or m_control variable does not exist or
is zero. It is also used as the maximum error for all elements of state and control vectors
whose assigned maximum error is zero.

MERROR can be executed at any time to set the default maximum error and transfer the
m_state variables to the maximum error vector for use by the variable step size integration
algorithms. Any changes made to the m_state variables will not be recognised by the
integration algorithms until MERROR has been executed.

MERROR(0) is automatically called each time the START, GO or SGLIN command is
used.

The m_state and m_control variables can be either scalars or Nx1 vectors. If they are scalars,
the scalar value is used as the maximum error for all elements of the associated state or
control vector. If they are Nx1 vectors, the dimensions must match the dimensions of the
associated vector. I.e. if m_x is a scalar 0 then the default maximum error set by MERROR
is used as the maximum error for all the elements of x.

Example
merr_tmp = merror(merror(0)/2);

In this example the previous default maximum error is saved in merr_tmp and then halved

MERROR

99

and all the m_state variables are transferred to the integration algorithm's maximum error
vector. Any elements of this vector which are 0 are assigned the default maximum error.

Globals
m_state, m_control

Technical Notes
Variable step size algorithms incorporate an equation which gives an estimate of the
integration truncation error for each state at each step. If this error estimate for any state
exceeds the desired_error for that state, then the integration algorithm reduces the step size.
It then retakes the step again using the smaller step size and recalculates the error estimate.
This process continues until either the step succeeds (i.e. the error estimates are less than the
desired_errors) or the minimum integration step is reached.

The desired_error is calculated from the specified MERRORs and RERRORs for each
state. The desired_error for each state is given by

desired_error = max(m_state, r_state * max(abs(state)))

where max(abs(state)) is the maximum of the absolute value of that state so far, not the
current value.

SGLIN also uses the maximum errors to set the minimum absolute perturbation of each state
and control element.

See Also
SGLIN, RERROR, MINT, INTALG, errmint

MERROR

100

MINT

Purpose
Sets or displays the minimum integration step size.

Format
minstep = MINT(minstep);

Inputs
minstep scalar, the desired minimum integration step size. If minstep is less than

SimGauss' epsilon the current step size is not changed.

Outputs
minstep scalar, the previous minimum integration step size.

Remarks
The minimum step size sets the limit on the smallest step a variable step size integration
algorithm may take. If the algorithm needs to reduce the step size below minstep in order to
satisfy the error criterion, it sets the flag errmint and calls the DYNAMIC procedure,
SGP_DYN. If errmint is still set when SGP_DYN returns, the simulation terminates with a
message. The minimum step size can be changed during a run using the MINT command.

If the time left to the next event is greater than SimGauss' epsilon but less than maxstep, a
short step is taken to bring the time up to the next event. This step may be less than minstep.

If MINT has not been used to set the minstep, the initial minstep is set to INITSTP(0)/100.

Example
min_tmp = mint(mint(0)/2);

This example saves the previous minimum step size in min_tmp and then reduces it by half.

See Also
MAXT, SETEPS, INITSTP

MINT

101

OBSERV

Purpose
Sets the observable variables for SGLIN.

Format
OBSERV variables;
OBSERV clearall variables;
OBSERV;

Inputs
variables a list of the global numeric column vectors, separated by spaces, to be added to

the existing observable variables.
If the list contains the name clearall, then all the current observable variables
associated with the model will be cleared. The variables following clearall will
then be added to list of observable variables.
If the list is empty the current observable variables will be displayed.

Indexing of elements is not allowed. The entire vector is observable.

Remarks
If there are no observable variables then SGLIN will return missings for the C and D
matrices. Initially there are no observable variables.

The order of the observable variables displayed by OBSERV is the order of the rows of the C
and D matrices returned by SGLIN. Model states may be observable variables also.

Example
observ x v;

This example adds the variables x and v to the current observable variables.

See Also
SGLIN, STATES, CONTROLS

OBSERV

102

PHYLIMIT

Purpose
Limits the position of a second order system.

Format
d_vel = PHYLIMIT(pos , vel , accel , stiff , damping , botlim ,);
d_pos = vel ;

Inputs
pos the position state variable to be limited.

vel the velocity state variable.

accel Nx1 vector expression for the system acceleration.

stiff Nx1 vector or scalar, the additional spring stiffness when in limit.

damping Nx1 vector or scalar, the additional velocity damping when in limit.

botlim Nx1 vector or scalar, the bottom position limits.

toplim Nx1 vector or scalar, the top position limits.

Outputs
d_vel the velocity derivative variable. The state defined by this derivative must be the

same as the vel input.

d_pos the position derivative variable. The state defined by this derivative must be the
same as the pos input.

Remarks
The Physical Limit function consists of two derivative statements. The first, PHYLIMIT,
defines the velocity state, vel, while the second defines the position state, pos.

This simulates a second order system which has physical stops that limit its movement. A
particular case is that of a mass/spring/damper system.

The equation of motion for this system is

PHYLIMIT

103

where

m is the mass
r is the damping and
k is the spring constant and
the mass is constrained to move between botlim and toplim,
that is botlim x toplim

To simulate this system, rewrite the equation of motion as

where

and

When the mass reaches a limit the spring stiffness, k, and the damping, r, are increased. This
corresponds to what happens physically and the equation of motion in the limits becomes

The additional stiffness, stiff, determines how far the mass penetrates the limits, for a give
velocity. The addition damping, damping, determines how much energy is dissipated in the
limits. Adjusting these two values allows a wide variety of systems to be modelled.

A variable step size integration algorithm, such as RKF2 or RKF4, should be used for the
periods the system is at the limits as the higher stiffness and damping usually require much
smaller integration steps.

PHYLIMIT

104

Example
D_v = phylimit(x, v, (K.*(x0−x)−R.*v)./M − g,
 5000, 40, 0, 100);
D_x = v;

In this example the force, f(t), on the mass/spring/system is due to gravity. 5000 is added to
the spring stiffness and 40 added to the damping when the mass reaches ground level. This
make the response quite bouncey but the damping causes a noticeable loss of energy on each
bounce. The top limit is set out of the way at 100.

Source
sg_utils.src

Globals
The states, pos and vel, and the derivatives, d_pos and d_vel.

See Also
LIMINT, BOUND

PHYLIMIT

105

PLOTVARS

Purpose
Specifies the variables to be saved for plotting.
 OR
Displays the currently specified plot variables.

Format
PLOTVARS varnames;
PLOTVARS clearall varnames;
PLOTVARS;

Inputs
varnames a list of names, separated by spaces, of the vectors or scalars to be saved at each

data logging interval for plotting later. These variable names will be added to
those variables already being saved.

If the list contains the name clearall, all the current plot variables will be
removed. Then the variables following clearall will be added to the list of plot
variables.

If the list is empty then the current plot variables will be displayed and
recompiled if their dimensions have changed.

Indexing of elements is not allowed. The entire vector is saved. Matrices cannot
be saved directly.

Remarks
By default when SimGauss is first loaded no plot variables are specified.

Although the entire vector is saved in the plot matrix, individual elements can be retrieved by
SGPLTVAR, SGXY etc. To save matrices assign each row or column to a variable and add
those variables to the existing plot variables.

The PLOTVARS command should only be called from the GAUSS command mode as it
terminates by RUNning the file s_plot.sg if the variables or dimensions have changed.

PLOTVARS

106

Example
» plotvars t x;

» plotvars;
The current SimGauss plot variables are :−
 T 1 x 1
 X 1 x 1

» plotvars clearall;
Simgauss : Clearing plot variables.

Technical Notes
The plot variables are saved in the SimGauss plot matrix. There is one row for each time data
is logged. Using a matrix is faster than storing the data in a file but limits the number of
points that can be saved. If the storage limits of the matrix are exceeded during the
simulation, then SimGauss will stop with the appropriate GAUSS error message. The
currently active procedure will be S_PLOT.

See Also
SGPLTVAR, SGXY, PRTVARS

PLOTVARS

107

PRTINT

Purpose
Specifies the number of data logging intervals between printing the variables specified by
PRTVARS.

Format
num = PRTINT(num);

Inputs
num scalar, the number of data logging intervals between prints.

If num is zero the current setting is not changed.

Outputs
num scalar, the previous number of data logging intervals between prints.

Remarks
This command only effects the displaying of the print variables, the plot variables are always
saved at each data logging interval.

The GAUSS FORMAT command controls the display format of the print variables.

Example
pint_tmp = prtint(prtint(0)*2);

This statement saves the previous print interval in pint_tmp and then doubles the time
between displaying the print variables.

See Also
PRTVARS, PLOTVARS

PRTINT

108

PRTVARS

Purpose
Specifies the variables to be printed. OR Displays the currently specified print variables.

Format
PRTVARS varnames;
PRTVARS clearall varnames;
PRTVARS

Inputs
varnames a list of names, separated by spaces, of the global variables to be printed at the

data logging intervals. These variables will be added to those variables already
being printed.

If the list contains the name clearall, all the current print variables will be
removed. Then the variables following clearall will be added to the list of print
variables.

If the list is empty then the current print variables will be displayed and
recompiled if their dimensions have changed.

Indexing of elements is not allowed. The entire vector or matrix is printed.

Remarks
By default, when SimGauss is first loaded, the time, t, is the only print variable. Initially the
print variables are printed at every data logging interval. This print rate can be reduced by
using PRTINT.

Turning the screen off using the GAUSS command SCREEN OFF will save a significant
amount of run time. The GAUSS OUTPUT command can be used to capture the print
variables in a file.

The PRTVARS procedure should only be called from the GAUSS command mode as it
terminates by RUNning the file s_print.sg if the variables or the dimensions have changed.

The GAUSS FORMAT command controls the display format of the print variables.

Use PRTVARS clearall to suppress all SimGauss output when running a model from within
another program, such as OPTMUM.

PRTVARS

109

Example
» prtvars; The current SimGauss print variables are
:−
 T 1 x 1

» prtvars x;
» prtvars;
The current SimGauss print variables are :−
 T 1 x 1
 X 1 x 1

» prtvars clearall;
SimGauss : Clearing print variables.

See Also
PRTINT, PLOTVARS

PRTVARS

110

QUANTIZE

Purpose
Quantizes the input.

Format
y = QUANTIZE(x , delta_x);

Inputs
x Nx1 vector, the continuous input.

delta_x Nx1 vector or scalar, the quantization steps.

Outputs
y Nx1 vector, the quantized output.

Remarks
The quantization is centred around 0 and the steps in the output occur at 0.5*delta_x. The
output, y, is calculated from

y = round(x ./ delta_x) .* delta_x

Example
y = quantize(−0.6|−0.4|0|0.4|0.6 , 1)
y
 −1
 0
 0
 0
 1

In this example the input vector is quantized in steps of 1.

Source
sg_utils.src

Globals
None

QUANTIZE

111

REINIT

Purpose
Stores the current state vectors in the initial condition variables.

Format
REINIT;

Remarks
The current values of the states are written into the i_state variables. The next START
command will then run the model from this state.

Note however that the DELAY matrices and the current output of any BACKLASH and
IMPLICIT statements are not saved.

The REINIT statement is best used to save the state of a model after it has been trimmed
using SGTRIM or when it has reached the desired operating point to which disturbances will
then be applied.

REINIT sets i_t since the time, t, is a state of the model. This means the next START
command will start from the current time. i_t can be changed to another value if you wish. i_t
is not overwritten when the model is recompiled unless it is explicitly defined in the model
code.

REINIT sets INITSTP to the current step size.

An alternative method of saving the current state for later use is the GAUSS command
SAVEALL. This saves the entire contents of the workspace to a file which can be reloaded
later using the RUN command.

See Also
START, INITIAL

REINIT

112

RERROR

Purpose
Sets the relative errors for the states and controls.

Format
r_error = RERROR(r_error);

Inputs
r_error scalar, the default relative error. If r_error is zero, the current default relative

error is not changed. When SimGauss is first loaded the default relative error is
1.0E−4.

Outputs
r_error scalar, the previous default relative error.

Remarks
This command only affects variable step size integration algorithms and SGLIN.

The default relative error is used for all states and controls which do not have an individual
relative error assigned, i.e. the associated r_state or r_control variable does not exist. It is
also used as the relative error for all elements of state or control vectors whose assigned
relative error is zero.

RERROR can be executed at any time to set the default relative error and transfer the r_state
variables to the relative error vector for use by variable step size integration algorithms. Any
changes made to the r_state variables will not be recognised by the integration algorithms
until RERROR has been executed.

RERROR(0) is automatically called each time the START, GO or SGLIN command is
used.

The r_state and r_control variables can be either scalars or Nx1 vectors. If they are scalars,
the scalar value is used as the relative error for all elements of the associated state or control
vector. If they are Nx1 vectors, the dimensions must match the dimensions of the associated
vector. I.e. if r_x is a scalar 0 then the default relative error set by RERROR is used as the
relative error for all the elements of x.

Example
rerr_tmp = rerror(rerror(0)/2);

In this example the previous default relative error is saved in rerr_tmp and it is then halved

RERROR

113

and all the r_state variables are transferred to the integration algorithm's relative error vector.
Any elements of this vector which are zero are assigned the default relative error.

Globals
r_state, r_control

Technical Notes
Variable step size algorithms incorporate an equation which gives an estimate of the
integration truncation error for each state at each step. If this error estimate for any state
exceeds the desired_error for that state, then the integration algorithm reduces the step size.
It then retakes the step again using the smaller step size and recalculates the error estimate.
This process continues until either the step succeeds (i.e. the error estimates are less than the
desired_errors) or the minimum integration step is reached.

The desired_error is calculated from the specified MERRORs and RERRORs for each
state. The desired_error for each state is given by

desired_error = max(m_state, r_state * max(abs(state)))

where max(abs(state)) is the maximum of the absolute value of that state so far, not the
current value.

SGLIN also uses the relative errors to set the relative perturbation of each state and control
element.

See Also
SGLIN, MERROR, MINT, INTALG, errmint

RERROR

114

SCHEDULE

Purpose
Schedules a DISCRETE section for execution at a later time.

Format
SCHEDULE(blkname , blktime);

Inputs
blkname string, contains the name of the DISCRETE section to be added to the

simulation's event queue. Leading and trailing blanks are not allowed.
blktime scalar, the time at which the section is to be executed. It must be greater than or

equal to the current time.

Remarks
Events with times earlier than the current time, t, by more than

 epsilon * | t | + epsilon / 2
cannot be scheduled as the event time is considered to have been passed.

SCHEDULE should only be used within the model as the simulation event queue is cleared
each time the START command is used to run the model. Use ADDEVENT to schedule user
event keywords from the GAUSS command mode.

The SCHEDULE statement does nothing when executed from the GAUSS command mode.

Example
schedule("sample",t+0.1);

This example SCHEDULEs the DISCRETE section sample to execute in 0.1 time units
from the current time.

See Also
DISCRETE, EVENTQUE, ADDEVENT, CLREVENT

SCHEDULE

115

SETEPS

Purpose
Sets the SimGauss epsilon.

Format
sgeps = SETEPS(sgeps);

Inputs
sgeps scalar, the desired SimGauss epsilon. If zero the current value is not changed. If

sgeps is greater than zero but less than 20 time the machine epsilon, eps, then
SimGauss' epsilon is set to 20*eps. 20*eps is approximately 4.4e−15 for xx87
co−processors.

Outputs
sgeps scalar, the previous value of SimGauss' epsilon.

Remarks
The SimGauss epsilon is used for determining if two times are the same.

The integration stops to execute the next event, such as data logging, if the current time is
within half epsilon of the event time. Also events with times earlier than the current time, t,
by more than
 epsilon * | t | + epsilon / 2
cannot be SCHEDULEd as the event time is considered to have been passed.

For **87 co−processors the default epsilon is approximately 4.4E−15. This means that in a
simulation spanning a 100 years, events within 1uS (1E−6 seconds) of each other are treated
as occurring at different times.

Epsilon is also used in some procedures to test for arguments equal to zero.

Example

» seteps(1.0e−6);
 4.4408921E−015

This sets the SimGauss epsilon to 1.0E−6. This means times within 0.0001% of each other
will be treated as the same time.

SETEPS

116

SGDEBUG

Purpose
Turns the SimGauss debugger on or off.

Format
SGDEBUG(boolean);

Inputs
boolean scalar, if non−zero the debugging will be turned on.

If zero, it will be turned off.

Remarks
When the SimGauss debugging is turned on SimGauss writes messages to the screen about
the current integration algorithm and step size, the state of the simulation event queue, the
time to the next event, etc. Exactly what information is provided will vary in different
versions of SimGauss.

SimGauss turns the debugging off quietly each time it compiles a model.

For small integration steps or long runs, large volumes of output are generated. It is usually
best to only turn the debugging on when necessary.

Example
sgdebug(t>1.5 and t<1.6);

In this example the debugging is only turned on when the simulation time is between 1.5 and
1.6. This statement is best placed in the DYNAMIC section of the model.

SGDEBUG

117

SGLIN

Purpose
Returns the state−space matrices of the model linearize around the current state.

Format
{ a,b,c,d } = SGLIN(non−lin);

Inputs
non−lin The non−linearity measure above which warning messages are issued.

If non−lin is 0 the default value of 0.1 is used.

Outputs
a b c d The state space matrices of the linearized model. Where

D_states = A * states + B * controls
observ = C * states + D * controls

Remarks
The order of the columns of A and B are order of the state variables as displayed by
STATES. The order of the columns of B and D is given by CONTROLS. While the order of
the rows of C and D is given by OBSERV. If there are no control variables specified then the
B and D matrices will be missings. If there are no observable variables specified then the C
and D matrices will be missings.

A central difference method is used to calculate the A,B,C and D matrices. Each of the
elements of the state and control variables is perturbed both positively and negatively and the
overall slope used to calculate the elements of the A, B, C and D matrices. The size of the
perturbation of each element of the states and controls is controlled by maximum and relative
error settings for that variable. E.g. for the variable x the positive and negative perturbation is
given by

MAXC(M_X | ABS(R_X*X))

If m_x or r_x are undefined then the default values set by MERROR or RERROR are used.
The initial default values are 1.0E−4

Only the DYNAMIC section of the model is used to calculate the A,B,C and D matrices, so
the control variables must effect an equation in the DYNAMIC section and the observable
variables must be calculated by the DYNAMIC section of the model. A column of zeros in B
indicates that control variable has no effect on the derivatives when the DYNAMIC section
of the model is executed. A row of zeros in C indicates that observable variable is not

SGLIN

118

effected by any of the states when the DYNAMIC section of the model is executed.

SGLIN initially checks for repeatablity of the calculation of the derivatives and observable
variables and issues a warning message if any of them differs in two successive calculations
of the DYNAMIC section of the model. It also checks the linearity of the model at the current
state by comparing the results obtained from the positive and negative perturbations with the
initial values of the derivatives and observable variables. The initial values of the derivatives
and observable variables should be the average of the perturbed results.

The difference between the initial values and the average of the positive and negative
perturbed results is scaled by the overall difference between the perturbed results to produce
a non−dimensional measure of non−linearity. A value of 0 indicates a linear system. A value
of 0.5 commonly arises from a variable at a limit. If the measure exceeds the input argument
value then a warning message is printed for that element of the matrix.

Example
call merror(0.1);
call rerror(0.01);
{a,b,c,d} = sglin(0.2);

This example sets the default minimum perturbation in each direction to 0.1 and for large
values of the state and control elements the default perturbation will be 1%. The linearized
model is then calculated with warning messages about non−linearity suppressed for
non−linearity measures below 0.2. Those states and controls that have their own m_ and r_
variables defined will use those values instead of the defaults.

See Also
STATES, CONTROLS, OBSERV, MERROR, RERROR

SGLIN

119

SGLOADP

Purpose
Load the plot matrix from a GAUSS data set.

Format
SGLOADP dataset;
SGLOADP

Inputs
dataset the filename of the GAUSS data set.

If dataset is not given, the data set TEMP.DHT, TEMP.DAT will be
loaded. TEMP.FST, if it exists, will also be loaded.

Remarks
This command is used to load SimGauss' plot matrix from a GAUSS data set. On systems
with limited memory the Publication Quality Graphics may not run with SimGauss loaded.
To overcome this memory limitation save the plot matrix using SGSAVEP, load the
Publication Quality Graphics and then use SGLOADP to reload the plot matrix. The
SimGauss plot commands SGXY, SGLOGX, SGLOGY and SGLOGLOG can then be
used to plot the results.

GAUSS data sets saved by other programs, which could be loaded using LOADD, can also
be loaded using SGLOADP. Using SGLOADP allows the SimGauss plot procedures to be
used to plot a data set's contents and SGPLTVAR can be used to select various individual
elements. The string in the .FST file, if it exists, is used to set the _pdate string for the plots.

Example
library simgauss;
sgloadp spring;

In this example the GAUSS data set SPRING.DHT, SPRING.DAT is loaded into the
SimGauss plot matrix to allow selection of variables via SGPLTVAR or plotting via SGXY
etc.

Source
sgloadp.src

Globals
SGLOADP(), LOADD(). All other globals are referenced by VARGET and VARPUT.

SGLOADP

120

Technical Notes
The files produced by SGSAVEP, for loading with SGLOADP, are in standard GAUSS data
set 8 byte format, except that for vectors the variable name is repeated in the .DHT file to
identify the columns associated with that vector. SGLOADP not only reloads the plot matrix
but also sets up the plot variable names and dimensions in a form suitable for the SimGauss
plotting procedures. The file sgloadp.src illustrates a method of recovering vectors from the
data set created by SGSAVEP. However it is often convenient just to use SGLOADP to
reload the entire plot matrix and then use SGPLTVAR to extract the required elements.

Only data sets which can be loaded with LOADD can be loaded with SGLOADP.

See Also
SGSAVEP, SGXY, SGLOGX, SGLOGY, SGLOGLOG, SGPLTVAR, PLOTVARS,
KEEPPLOT

SGLOADP

121

SGLOGLOG, SGLOGX, SGLOGY, SGXY

Purpose
LogLog, LogX, LogY, XY plot of variables from the plot matrix.

Format
SGLOGLOG xvars , yvars;
SGLOGX xvars , yvars;
SGLOGY xvars , yvars;
SGX xvars , yvars ;

Inputs
xvars a list, separated by spaces, of the X axis plot variable names,

optionally with numerical indices.
yvars a list, separated by spaces, of the Y axis plot variable names,

optionally with numerical indices.

Remarks
These plotting KEYWORDS use the Publication Quality Graphics routines do the plotting.
Both the simgauss and the pgraph libraries must be active and the Publication Quality
Graphics must have been installed.

These commands also set the X and Y axis labels to the strings xvars and yvars respectively.
As these commands are GAUSS KEYWORDs the argument is converted to upper case
unless xvars , yvars is enclosed in inverted commas. These commands use SGPLTVAR to
extract the variables from the plot matrix.

Only numeric indices are allowed, separated by spaces. Expressions or variables are not
allowed for indices.

If xvars or yvars contains multiple elements, then symbols and lines will be displayed on the
plot. This is done by setting _plctrl to 1 to display symbols on the various curves. This can
be reset by calling the graphics library command GRAPHSET.

SimGauss does not need to be in memory to use these procedures. See SGLOADP for how
to load a plot file from disk.

Example
library simgauss, pgraph;
sgloglog "t,x[1 2]";

In this example the log of the variables x[1] and x[2] are plotted against the log of the time, t.

SGLOGLOG, SGLOGX, SGLOGY, SGXY

122

The axes' labels are set to t and x[1 2] because the string following SGLOGLOG was
enclosed in inverted commas.

Source
sgloglog.src, sglogx.src, sglogy.src, sgxy.src

Globals
SGLOGLOG(), SGPLTVAR(), LOGLOG(), SGLOGX(), LOGX(), SGLOGY(), LOGY(),
SGXY(), XY(). All other globals are referenced by VARGET and VARPUT.

See Also
SGPLTVAR, SGLOADP, SGSAVEP, PLOTVARS, KEEPPLOT

SGLOGLOG, SGLOGX, SGLOGY, SGXY

123

SGPLTVAR

Purpose
Extracts variables from the plot matrix.
 OR
Displays the plot variables stored in the plot matrix.

Format
y = SGPLTVAR(vars);

Inputs
vars string, the names of the plot variables, separated by spaces, optionally with

numerical indices
 OR
"SEQA"

A null string, "", or empty string, " ", will display the names of the plot variables
saved in the plot matrix.

Outputs
y matrix, the columns selected by vars

 OR
a column vector of indices if vars contains the string "SEQA"

If the input string is a null or empty, the plot variables are displayed and GAUSS
reverts to command mode.

Remarks
Only numeric indices are allowed, separated by spaces. Expressions or variables are not
allowed for indices.

The "SEQA" option is useful for plotting all the points of a variable against its row index. For
variable step size algorithms using DATASTEP(−1) this shows the value at each step in the
integration.

SimGauss does not need to be in memory to use this procedure. See SGLOADP for how to
load a plot data set from disk.

_pdate is set to "\201SimGauss V2.0 Model name Compiled date_time Plotted ". This sets
the date stamp at the top left of the Publication Quality Plots. This can be reset by calling the
graphics library command GRAPHSET.

SGPLTVAR

124

Since SGXY, SGLOGX, SGLOGY and SGLOGLOG all call this procedure these notes
will also apply to those commands.

Example
library simgauss, pgraph;
xy(sgpltvar("t"),sgpltvar("x[1 2]"));

This example selects the columns which contain the values of t, x[1] and x[2] from the
current plot matrix and passes the results to XY for plotting. The SimGauss command SGXY
does a better job.

Source
sgpltvar.src

Globals
SGPLTVAR(). All other globals are referenced by VARGET and VARPUT.

See Also
SGLOADP, SGSAVEP, SGXY, SGLOGX, SGLOGY, SGLOGLOG, PLOTVARS,
KEEPPLOT

SGPLTVAR

125

SGSAVEP

Purpose
Save the plot matrix to a GAUSS data set.

Format
SGSAVEP dataset;

Inputs
dataset the filename of the GAUSS data set.

If dataset is not given, the data set TEMP.DHT, TEMP.DAT will be
created as well as TEMP.FST.

Remarks
This command is used to save SimGauss' plot matrix to a GAUSS data set and the model
name to string file. On systems with limited memory the Publication Quality Graphics may
not run with SimGauss loaded. To overcome this memory limitation save the plot matrix
using SGSAVEP, load the Publication Quality Graphics and then use SGLOADP to reload
the plot matrix. See SGLOADP for further details.

Example
sgsavep spring;

In this example the GAUSS data set SPRING.DHT, SPRING.DAT and SPRING.FST is
created and the current SimGauss plot matrix and model name written to them.

Source
sgsavep.src

Globals
SGSAVEP(), SAVED(). All other globals are referenced by VARGET and VARPUT.

See Also
SGLOADP, SGXY, SGLOGX, SGLOGY, SGLOGLOG, SGPLTVAR, PLOTVARS,
KEEPPLOT

SGSAVEP

126

SGTRIM

Purpose
Trim the model for steady state conditions.

Format
SGTRIM(0);
SGTRIM(&fn);

Inputs
&fn The address of a procedure to executed at each iteration of the trimming process

in addition to executing the DYNAMIC section of the model. This procedure
must expect no arguments and return no results.
If this address is 0 only the DYNAMIC section of the model is executed.

Remarks
The optional GAUSS Nonlinear Simultaneous Equations module is required to run
SGTRIM. NLSYS is used to zero the derivatives of the model associated with the unfrozen
states. Refer to the GAUSS APPLICATIONS manual for full details of the globals which
control NLSYS. The nlsys library must be set prior to calling SGTRIM.

For models which use digital controllers implemented in DISCRETE blocks, the controller
must be executed for each iteration of NLSYS if the correct steady state condition is to be
found. The procedure address argument passed to SGTRIM allows this to be done (see the
example below). If there is no controller or the controller is implemented in the DYNAMIC
section of the model then SGTRIM(0) can be used.

If SGTRIM terminates with the error message
SimGauss ERROR in SGTRIM : Initial gradient matrix is singular.
The gradient matrix of the current unfrozen states will be displayed together with a list of the
unfrozen states associated with each column. The rows of the gradient matrix are associated
with the derivatives of the same states. A zero column in the gradient matrix indicates that the
associated state has no effect of any of the derivatives and should be frozen using FREEZE.
A zero row in the gradient matrix indicates that no states effect that derivative and the
associated state should also be frozen.

After the model has been trimmed, REINIT can be used to save the trimmed states as the
initial conditions. The other model variables will not be updated until the model is next run.

NLSYS allows for the scaling of the function arguments and results via use of the global
variables _nltypx and _nltypf. Two procedures, which are not documented elsewhere, are
provided to give access to suitable values for these variables, taking into account the frozen

SGTRIM

127

states. These global variables need to be updated each time additional states are frozen.

CRNT_ST takes no arguments and returns the current unfrozen states.

_nltypx = crnt_st;

DYN_FN(CRNT_ST) takes the current unfrozen states and returns the current values of the
derivatives of the unfrozen states. It is these derivatives which NLSYS is trying to make zero.

_nltypf = dyn_fn(crnt_st);
Example

In this example the STATEMAT model from Section 5.2 of the SimGauss Tutorial will be
trimmed (refer Section 5.2 for the model code). STATEMAT has a digital controller
implemented by two DISCRETE sections, sample and control. To ensure the model's
controller is executed every iteration of NLSYS, a procedure called temp will be created to
call the sample and sample procedures created by the SimGauss translator from the
DISCRETE sections. Note that these procedures must be called in the same order as they
execute during the simulation.

library simgauss, pgraph, nlsys;
proc(0) = temp;
 sample;
 control;
endp;
sgtrim(&temp);

Source
sgtrim.src

See Also
REINIT, FREEZE, SGLIN

SGTRIM

128

SIMGAUSS

Purpose
Translates and compiles a model.

Format
SIMGAUSS model_name

Inputs
model_namethe name of the model to translate and compile.

If no name is given the program prompts for the name of the model.
If a file extension is given it must be .sgm

Remarks
If SimGauss is not already in the GAUSS workspace, the workspace is cleared and the
simgauss.csg.gcg file is RUN to load SimGauss.

Pressing the Enter key in response to the model name prompt will terminate the
SIMGAUSS command.

Typing a directory name including the final \ will list all the .sgm files on that directory.
Use .\ to list the .sgm files on the current directory.

Refer to the section on Customizing SimGauss in the Introduction of the SimGauss Tutorial
for examples of how simgauss.csg.gcg can be modified to include other procedures.

Example
See the SimGauss Tutorial for examples of this command and Chapter 9, 'Debugging Models'
for a detailed description of the model compilation process.

See Also
START, GO

SIMGAUSS

129

START

Purpose
Runs the model from its initial conditions.

Format
runtime = START;

Outputs
runtime string, the duration of run

Remarks
The START command is used to start the first run of the model and any subsequent runs
which are to execute the INITIAL section of the model code.

The START command clears the HALT flag and the event queue. It then transfers the user's
event list to the simulation event queue and executes the INITIAL section of the model. At
the end of the INITIAL section, the initial conditions are transferred to the states. If any of
the dimensions of the model's states have changed since the last run the state transfer
procedure is automatically recompiled and START is called again.

The model's DYNAMIC, DISCRETE and DATALOG sections are then executed in the order
they appear in the model code to initialize all the variables for the first data logging and to
SCHEDULE the repetitive DISCRETE blocks. Any LOGDATA calls are suppressed during
this initial evaluation.

At this point the first output of print and plot variables can take place. If any of the
dimensions or names of the print or plot variables has changed since the last run then the
affected procedure is recompiled and START is called again. Then the state equations in the
DYNAMIC section are integrated until the HALT flag becomes true or there is a user
interrupt. Then the TERMINAL section of the model is executed before returning a string
indicating the duration of the run.

If _sgkey is non−zero, a user interrupt can be initiated by pressing the H key.

See Also
GO, stoptime, HALT, _sgkey

START

130

STATES

Purpose
Displays the model's states.

Format
STATES;

Remarks
The order of the list of the state variables displayed by STATES is the order of the columns
of the A and C matrices returned by SGLIN. The derivatives of these states, in the order
displayed, are the rows of the A and B matrices. The time state, t, is technically always a
state of the model but is not included in the matrices returned by SGLIN.

Example
states;
In addition to the time state, T, the model's states
are :−
X[1] X[2] X[3]
V[1] V[2] V[3]

This example displays the states of a model containing two state vectors each of dimension 3.
The order of the states displayed indicates that the first three columns of the A and C matrices
returned by SGLIN are associated with state elements X[1], X[2] and X[3]. The last three
columns are associated with the state elements V[1], V[2] and V[3]. The six rows of the A
and B matrices are associated with the derivatives of these states, i.e. D_X[1], D_X[2],
D_X[3], D_V[1], D_V[2] and D_V[3].

See Also
SGLIN, CONTROLS, OBSERV

STATES

131

stoptime

Purpose
Sets the end time for the integration.

Format
stoptime scalar, the stop time for the run.

Remarks
When either START or GO is used to run the model, stoptime sets the time at which the run
will halt. The default value is 0. START and GO will terminate immediately if the current
time, t, is greater than or equal to stoptime.

If stoptime is equal to an event time, then stoptime takes precedence and simulation halts
without having executed that event.

The integration can also be stopped prior to the stoptime by using the HALT procedure
within the model or by pressing the H key if _sgkey is non−zero.

Globals
stoptime

See Also
i_t, HALT, _sgkey

stoptime

132

TABLE

Purpose
Looks up the table of a function of 3 variables.

Format
fnzxy = TABLE(tablemat , zvec , xvec , yvec , z , x , y);

Inputs
tablemat X*Z x Y matrix, contains the function's data points. This is defined by the user

prior to calling TABLE.

zvec Zx1 vector, the break points for z axis.−
xvec Xx1 vector, the break points for x axis.
yvec Yx1 vector, the break points for y axis.

These vectors must be strictly monotonically increasing. That is the next break
point must always be greater than the last one.

z Nx1 vector or scalar, the index points for z co−ordinate.
x Nx1 vector or scalar, the index points for x co−ordinate.
y Nx1 vector or scalar, the index points for y co−ordinate.

Outputs
fnzxy Nx1 vector, the value of the function at (z,x,y).

Remarks
The table of functional values is defined by the user before calling TABLE. Size of the table
matrix, tablemat, is length (xvec)*length(zvec) rows by lenght(yvec) columns. This can be
thought of as a number of matrices (length(zvec) matrices) each with length(xvec) rows and
length(yvec) columns. That is, there is one matrix for each element in zvec and the matrices
are stored by appending them row−wise.

For example

tablemat[1,1] = fn(zvec[1],xvec[1],yvec[1])
tablemat[1,2] = fn(zvec[1],xvec[1],yvec[2])

tablemat[1,n] = fn(zvec[1],xvec[1],yvec[n])

tablemat[2,n] = fn(zvec[1],xvec[2],yvec[n])

TABLE

133

tablemat[m,n] = fn(zvec[1],xvec[m],yvec[n])

tablemat[1*rows(xvec)+m,n] = fn(zvec[2],xvec[m],yvec[n])

tablemat[(k−1*rows(xvec)+m,n] = fn(zvec[k],xvec[m],yvec[n])

Linear interpolation is used to calculate the functional value. If any of the input arguments lie
outside the range of the table, linear interpolation is used on the last two points in the table to
calculate the result.

Example
A three dimensional function has the following functional values:

z x y f(zxy)
2 −1 0 1
2 −1 1 2
2 0 0 3
2 0 1 4
3 −1 0 2
3 −1 1 4
3 0 0 6
3 0 1 8

For this function the vectors and table matrix are

» zv = {2,3}; xv = {−1,0}; yv = {0,1}
» a = {1 2, 3 4, 2 4, 6 8};
» a

1.000000 2.000000
3.000000 4.000000
2.000000 4.000000
6.000000 8.000000

» table(a, zx, xv, yv, 2, 0|1, 0|0.5);
3.000000
5.500000

Here the second x index, 1, is outside the range of the table so the interpolated functional
values for fn(2,−1,0.5)=0.5 and fn(2,0,0.5)=3.5 are used to extend the table to (2,1,0.5).

TABLE

134

» a[1:2,.]
 1.000000 2.000000
 3.000000 4.000000
» table(a[1:2,.],0,xv,yv,0,0,1);
 4.000000

This is an example of a two dimensional table formed by taking the matrix for z=2. In the
TABLE statement zvec and z are replaced with the same arbitrary constant value. If the index
vector, zvec, is a scalar then the index value, z, must be the same scalar.

» a[1,.]
 1.000000 2.000000
» table(a[1,.],0,0,yv,0,0,2);
 3.000000

Here a one dimensional table is formed by taking the first row of a and replacing zvec and z,
and xvec and x with arbitrary constant values.

TABLE

135

TERMINAL

Purpose
Indicates the start of the model's TERMINAL section.

Format
TERMINAL;

Remarks
The SimGauss translator puts the code in the model's TERMINAL section into a procedure
called SGP_TERM. This procedure is then CALLed at the end of each run immediately
prior to returning the run time.

Technical Notes
Since the model code in the TERMINAL section is put into a separate procedure, you cannot
branch out of this section using GOTO statements and procedure definitions are not allowed
in this section. Also IF and DO statements must not extend outside this section.

See Also
END_TERM, INITIAL, DYNAMIC, DISCRETE, DATALOG

TERMINAL

136

	Table of Contents
	Chapter 1 Introduction
	1.1 Introduction
	1.2 Customizing SimGauss

	Chapter 2 A Simple Model
	2.1 Spring System
	2.1.1 Compiling the Model
	2.1.2 Possible Installation Errors
	2.1.3 The Model Code
	2.1.4 Printing and Plotting Variables
	2.1.5 Saving and Loading the Plot Matrix

	Chapter 3 Model Structure
	3.1 SimGauss Model Structure
	3.2 SimGauss Flow Chart
	3.3.SimGauss Naming Conventions
	3.3.1 Files
	3.3.2 Identifiers
	3.3.3 Strings
	3.3.4 Characters
	3.3.5 Comments

	Chapter 4 A Full Model
	4.1 Digitally Controlled Spring System
	4.1.1 Model Code
	4.1.2 Results

	Chapter 5 State Vectors
	5.1 Parameter Vectors
	5.2 State Space Systems

	Chapter 6 Integration Algorithms
	6.1 The Integration Procedure
	6.2 Fixed Step Size Algorithms
	6.2.1 Euler's Method
	6.2.2 Runge-Kutta Methods

	6.3 Variable Step Size Algorithms
	6.3.1 Runge-Kutta-Fehlberg Methods
	6.3.2 Richardson-Bulirsch-Stoer Method
	6.3.3 Adams-Moulton and Gear's Stiff Method
	6.3.4 Step Size Control

	6.4 A Modified State Space System

	Chapter 7 User Events
	7.1 User Event Keywords
	7.2 User Event Example

	Chapter 8 Embedded Simulations
	8.1 Two Point Boundary Value Problem
	8.2 Identification of a Chemical Reactor
	8.2.1 SimGauss Model File
	8.2.2 OPTMUM Model File
	8.2.3 Estimating the Parameters
	8.2.4 Plotting the Results

	Chapter 9 Debugging Models
	9.1 Translation errors
	9.2 Compilation Errors
	9.2.1 .sgs File
	9.2.2 .sgm File
	9.2.3 .sgp File

	9.3 Execution Errors
	9.4 SGDEBUG
	9.5 SimGauss Defaults
	9.5.1 Print Format
	9.5.2 Other Defaults

	SimGauss Reference
	Command Summary
	_sgkey
	ADDEVENT
	BACKLASH
	BOUND
	CLREVENT
	CONTROLS
	DATALOG
	DATASTEP
	DEADBAND
	DELAY
	DISCRETE
	DYNAMIC
	END_DISC, END_DL, END_DYN, END_INIT, END_TERM
	errmint
	EVENTQUE
	FREEZE
	GO
	HALT
	i_t
	IMPLICIT
	INITIAL
	INITSTP
	INTALG
	KEEPPLOT
	LIMINT
	LOGDATA
	MAXORD
	MAXT
	MERROR
	MINT
	OBSERV
	PHYLIMIT
	PLOTVARS
	PRTINT
	PRTVARS
	QUANTIZE
	REINIT
	RERROR
	SCHEDULE
	SETEPS
	SGDEBUG
	SGLIN
	SGLOADP
	SGLOGLOG, SGLOGX, SGLOGY, SGXY
	SGPLTVAR
	SGSAVEP
	SGTRIM
	SIMGAUSS
	START
	STATES
	stoptime
	TABLE
	TERMINAL

